Background: The radionuclide-labeled bevacizumab (BV) is a potential therapeutic approach for vascular endothelial growth factor overexpressed tumors. Because of its large molecular weight, BV is cleared slowly in vivo , which caused damage to healthy tissues and organs. On account of this situation, using the pretargeting strategy with DNA/RNA analogs, such as peptide nucleic acid (PNA), is an effective way of treating solid tumors.
View Article and Find Full Text PDFIntroduction: Grass carp reovirus (GCRV), a member of the in the family, is considered to be the most pathogenic aquareovirus. Productive viral infection requires extensive interactions between viruses and host cells. However, the molecular mechanisms underlying GCRV early infection remains elusive.
View Article and Find Full Text PDFmRNA vaccines have proven to be more stable, effective, and specific than protein/peptide-based vaccines in stimulating both humoral and cellular immune response. However, mRNA's fast degradation rate and low-transfection efficiency in vivo impede its potential in vaccination. Recent research in gene delivery has focused on nonviral vaccine carriers and either implantable or injectable delivery systems to improve transgene expression in vivo.
View Article and Find Full Text PDFmRNA is increasingly being recognized as a promising alternative to pDNA in gene vaccinations. Only recently, owing to the needs of cancer immunotherapies, has the biomaterials/gene delivery community begun to develop new biomaterial strategies for immunomodulation. Here, we report a novel way to use implantable porous scaffolds as a local gene delivery depot to enhance mRNA vaccine immunization in vitro, and in vivo when compared with conventional bolus injections.
View Article and Find Full Text PDFInjectable and biodegradable alginate-based composite gel scaffolds doubly integrated with hydroxyapatite (HAp) and gelatin microspheres (GMs) were cross-linked via in situ release of calcium cations. As triggers of calcium cations, CaCO3 and glucono-D-lactone (GDL) were fixed as a mass ratio of 1:1 to control pH value ranging from 6.8 to 7.
View Article and Find Full Text PDFBiopolymer-based nanogels have great potential in the field of tissue regenerative medicine. In this work, a magnetic biopolymer nanogel via specific nucleobase pairing was developed for vectoring delivery of cell growth factors. The biopolymer based nanogels chitosan and heparin were established by the Watson-Crick base pairing between thymine and adenine via the hydrogen bonding.
View Article and Find Full Text PDFBiopolymer-based gel scaffolds have great potential in the field of tissue regenerative medicine. In this work, a nanostructured biopolymer gel scaffold via specific pairing of functionalized nucleobases was developed for specifically targeted drug delivery and in vitro osteogenesis. The biopolymer gel system was established by the Watson-Crick base pairing between thymine and adenine via the hydrogen bonding.
View Article and Find Full Text PDF