Publications by authors named "JingDong Mao"

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects.

View Article and Find Full Text PDF

Groundwater contamination by 1,2,3-trichloropropane (TCP) poses a unique challenge due to its human toxicity and recalcitrance to degradation. Previous work suggests that nitrogenous functional groups of pyrogenic carbonaceous matter (PCM), such as biochar, are important in accelerating contaminant dechlorination by sulfide. However, the reaction mechanism is unclear due, in part, to PCM's structural complexity.

View Article and Find Full Text PDF

Atmospheric exposure is an important pathway of accumulation of lead (Pb) in Oryza sativa L. grains. In this study, source contributions of soil, early atmospheric exposure, and late atmospheric exposure, along with their bioaccumulation ratios were examined both in the pot and field experiments using stable Pb isotope fingerprinting technology combined with a three-compartment accumulation model.

View Article and Find Full Text PDF

We employed a polymer network to understand what properties of pyrogenic carbonaceous matter (PCM; ., activated carbon) confer its reactivity, which we hereinafter referred to as PCM-like polymers (PLP). This approach allows us to delineate the role of functional groups and micropore characteristics using 2,4,6-trinitrotoluene (TNT) as a model contaminant.

View Article and Find Full Text PDF

Elevated plasma nonesterified fatty acids (NEFAs) affect neutrophils function and longevity during the periparturient period in dairy cows. Previous research has shown that resveratrol (RSV) may protect cell viability from NEFA-induced damage by regulating energy metabolism. However, it is unclear whether RSV has a protective effect on palmitic acid (PA)-treated neutrophils.

View Article and Find Full Text PDF

Managing above-ground plant carbon inputs can pave the way toward carbon neutrality and mitigating climate change. Chemical complexity of plant residues largely controls carbon sequestration. There exist conflicting opinions on whether residue chemistry diverges or converges after long-term decomposition.

View Article and Find Full Text PDF

Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction.

Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils.

Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d).

View Article and Find Full Text PDF

Selective binding of organic compounds is the cornerstone of many important industrial and pharmaceutical applications. Here, we achieved highly selective binding of aromatic compounds in aqueous solution and gas phase by oxygen-enriched graphene oxide (GO) nanosheets via a previously unknown mechanism based on size matching and polarity matching. Oxygen-containing functional groups (predominately epoxies and hydroxyls) on the nongraphitized aliphatic carbons of the basal plane of GO formed highly polar regions that encompass graphitic regions slightly larger than the benzene ring.

View Article and Find Full Text PDF

Traditionally, lead (Pb) in rice grains has been thought to be mostly derived from soil, and the contribution of aerosol Pb remains so far unknown. Based on a meta-analysis, we surprisingly found rice Pb content decreased proportionally with urban atmospheric Pb concentrations in major rice-growing provinces in China during 2001-2015, suggestive of the strong influence of long-range Pb transport on agricultural environment. With the combination of field survey, field experiment, as well as a predictive model, we confirmed high contribution of atmospheric exposure to rice grain Pb in China.

View Article and Find Full Text PDF

Drinking water disinfection by chlorination or chloramination can result in the formation of disinfection byproducts (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs). Pyrogenic carbonaceous matter (PCM), such as activated carbon (AC), is commonly used as an ostensibly inert adsorbent to remove HAAs from water. HAA degradation has been mainly attributed to biological factors.

View Article and Find Full Text PDF

Hypoglycemia resulting from a negative energy balance (NEB) in periparturient cattle is the major reason for a reduced glycogen content in polymorphonuclear neutrophils (PMNs). The lack of glycogen induces PMNs dysfunction and is responsible for the high incidence of perinatal diseases. The perinatal period is accompanied by dramatic changes in sex hormones levels of which estrogen (17β-estradiol, E2) has been shown to be closely associated with PMNs function.

View Article and Find Full Text PDF

Activated, oxidized, and solvent-extracted black carbon samples (BCs) were produced from a shale kerogen at temperatures ranging from 250 to 500 °C by chemical activation regents (KOH, ZnCl), oxidative regents (HO, NaClO), and organic solvents, respectively. Extracted organic matter (EOM) and polycyclic aromatic hydrocarbons (PAHs) were quantified in BCs, and they increased and then decreased with increasing temperature. Sorption and desorption isotherms of nonylphenol (NP) on BCs were compared with those previously reported for phenanthrene (Phen).

View Article and Find Full Text PDF

Labile organic carbon (LOC) fractions and related enzyme activities in soils are considered to be early and sensitive indicators of soil quality changes. We investigated the influences of fertilization and residue incorporation on LOC fractions, enzyme activities, and the carbon pool management index (CPMI) in a 10-year field experiment. The experiment was composed of three treatments: (1) no fertilization (control), (2) chemical fertilizer application alone (F), and (3) chemical fertilizer application combined with incorporation of wheat straw residues (F + R).

View Article and Find Full Text PDF

Fused-ring aromatics, important skeletal components of black carbon (BC), contribute to long-term carbon (C) sequestration in nature. They have previously been thought to be primarily formed by incomplete combustion of organic materials, whereas the nonpyrogenic origins are negligible. Using advanced solid-state C nuclear magnetic resonance (NMR), including recoupled long-range C-H dipolar dephasing, exchange with protonated and nonprotonated spectral editing (EXPANSE), and dipolar-dephased double-quantum/single-quantum (DQ/SQ) spectroscopy, we for the first time identify fused-ring aromatics that formed during the decomposition of wheat ( sp.

View Article and Find Full Text PDF

Much research has been devoted to investigating how water-extractable organic carbon (DOC) concentration and microbial activity regulate soil organic carbon (SOC) mineralization when soils are saturated with water. However, the relationships of DOC chemical structure and microbial community composition with SOC mineralization, as well as the relative contributions of microbial decomposers and their substrates on the mineralization rate have rarely been examined. In a laboratory experiment, we incubated two typical cropland soils (an Entisol and a Mollisol) of China for 360 days under submerged and non-submerged conditions, and we evaluated the concentration and chemical structure of soil DOC, soil microbial metabolic potential and community composition by using total C/N analysis, solution-state H NMR, Biolog EcoPlates, and 16S rRNA amplicon sequencing, respectively.

View Article and Find Full Text PDF

Reducing the applications of mineral phosphorus (P) fertilizers and supplementing them by organic fertilizers is becoming a necessary practice in the North China Plain due to overuse of mineral P fertilizers and improper disposal of organic wastes. Knowledge is needed about how the long-term substitution of mineral fertilizers by organic fertilizers affects soil P forms in order to understand soil P transformation and crop P uptake. In this study, we used solution P nuclear magnetic resonance (NMR) spectroscopy to characterize P forms in fluvo-aquic soil after 26 years of different fertilization management strategies, organic compost (OM), half compost in combination with half mineral fertilizer NPK (1/2 OM), mineral fertilizer NPK (NPK), mineral fertilizer NK (NK), and an unfertilized control (CK).

View Article and Find Full Text PDF

Humic substances (HS) are vital to soil fertility and carbon sequestration. Using multiple cross-polarization/magic-angle spinning (multiCP/MAS) NMR combined with dipolar dephasing, we quantitatively characterized humic fractions, i.e.

View Article and Find Full Text PDF

The effects of the chemical structure, surface properties, and micropore of modified black carbon samples (BCs) on the sorption mechanism of hydrophobic organic contaminants (HOCs) are discussed. Activated and oxidized BCs were produced from a shale kerogen at 250-500 °C by chemical activation regents (KOH and ZnCl) and then by oxidative regents (HO and NaClO). The surface properties (water contact angel, Boehm titration, and cation exchange capacity, CEC), structural properties (advanced solid-state C NMR), micropore properties (CO adsorption), mesopore properties (N adsorption), and sorption and desorption properties of phenanthrene were obtained.

View Article and Find Full Text PDF

Pyrogenic carbonaceous matter (PCM) is redox-active and promotes both abiotic and biotic reactions in the environment, possibly as a result of its conductivity and phenolic/quinone functional groups. However, due to the complexity of PCM, the contribution of conductivity or phenolic/quinone functional groups to its redox activity is poorly understood, which hinders its potential engineering applications. Here, we synthesized tunable conjugated microporous polymers (CMPs) that possess key properties of PCM, which can be used as PCM analogues to provide insights to PCM reactivity.

View Article and Find Full Text PDF

We investigated how the degradation of 7-C-BaP aged in sediments by HO treatment was influenced by the chemical structures, compositions, and microporosity of sedimentary organic carbon (SOC). Unstable OC (USOC), stable OC (STOC), mineral-protected OC (MOC), and chemically resistant OC (ROC) fractions were fractionated. The chemical structures and microporosity of the ROC fractions were characterized by C solid-state nuclear magnetic resonance (NMR) and CO adsorption technique, respectively.

View Article and Find Full Text PDF

Soil organic matter (SOM) changes with land use and soil management, yet the controlling factors over the chemical composition of SOM are not fully understood. We applied quantitative C nuclear magnetic resonance and spectral editing techniques to measure chemical structures of SOM from different land use types. The land use types included a native grassland (nGL), a crop land with straw burning in the field (bCL), a restored grassland (rGL) and a cropland with straw removed out of the field (rCL) for 28years.

View Article and Find Full Text PDF

Crop straw incorporation is a useful approach for increasing the quantity and changing the chemical composition of soil organic matter (SOM). This process is influenced by soil aeration. The present study investigated the stability of whole SOM, particulate organic matter (POM) and mineral-associated organic matter (MinOM) fractions with wheat straw amendment under aerobic and anaerobic conditions over a 12-month incubation period.

View Article and Find Full Text PDF

Characterization of dissolved organic matter/nitrogen (DOM/DON) is critical in water quality assessment and nutrient management in watershed or ecosystem. This study was to investigate the link between DOM/DON and its source using fluorescence excitation-emission matrix (EEM) spectroscopy coupled with parallel factor analysis (PARAFAC). Water samples were collected from various aquatic systems in a watershed located in central Missouri, including rural watershed with various land use and land cover (LULC), landfill, and constructed wetland.

View Article and Find Full Text PDF

New information on the chemical composition of dissolved organic matter (DOM) in three lakes in Minnesota has been gained from spectral editing and two-dimensional nuclear magnetic resonance (NMR) methods, indicating the effects of lake hydrological settings on DOM composition. Williams Lake (WL), Shingobee Lake (SL), and Manganika Lake (ML) had different source inputs, and the lake water residence time (WRT) of WL was markedly longer than that of SL and ML. The hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions combined comprised >50% of total DOM in these lakes, and contained carboxyl-rich alicyclic molecules (CRAM), aromatics, carbohydrates, and N-containing compounds.

View Article and Find Full Text PDF

The interactions between plants and nanomaterials (NMs) can shed light on the environmental consequences of nanotechnology. We used the major crop plant rice (Oryza sativa L.) to investigate the uptake of gold nanoparticles (GNPs) coated with either negatively or positively charged ligands, over a 5-day period, in the absence or presence of one of two amino acids, aspartic acid (Asp) or lysine (Lys), acting as components of rice root exudates.

View Article and Find Full Text PDF