Publications by authors named "Jing-wei Shao"

Combination immunotherapy has shown promising potential for enhancing the objective response rate compared to immune checkpoint blockade (ICB) monotherapy. However, combination therapy with multi-drugs is limited by the different properties of the agents and inconsistent synergistic targeted delivery. Herein, based on a universal triterpene template and the anticancer active agent ursolic acid (UA), a cytomembrane-coated biomimetic delivery nanoplatform (UR@M) prepared by the self-assembly of a targeted CRISPR/Cas9 system and UA was designed for hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion.

View Article and Find Full Text PDF

As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research.

View Article and Find Full Text PDF

The heterogeneity of hepatocellular carcinoma (HCC) and the complexity of the tumor microenvironment (TME) pose challenges to efficient drug delivery and the antitumor efficacy of combined or synergistic therapies. Herein, a metal-coordinated carrier-free nanodrug (named as USFe LA NPs) was developed for ferroptosis-mediated multimodal synergistic anti-HCC. Natural product ursolic acid (UA) was incorporated to enhance the sensitivity of tumor cells to sorafenib (SRF).

View Article and Find Full Text PDF

Both ursolic acid (UA) and sorafenib (Sora) have been generally utilized in cancer treatment, and the combination of the two has also shown a good anti-tumor effect. However, single-agent therapy for Hepatocellular carcinoma (HCC) has the disadvantages of multi-drug resistance, poor water solubility and low bioavailability, and the application of traditional nanocarrier materials is limited due to their low drug loading and low carrier-related toxicity. Therefore, we prepared US NPs with different proportions of UA and Sora by solvent exchange method for achieving synergistic HCC therapy.

View Article and Find Full Text PDF

The effectiveness of chemotherapeutic agents for hepatocellular carcinoma (HCC) is unsatisfactory because of tumor heterogeneity, multidrug resistance, and poor target accumulation. Therefore, multimodality-treatment with accurate drug delivery has become increasingly popular. Herein, a cell penetrating peptide-aptamer dual modified-nanocomposite (USILA NPs) was successfully constructed by coating a cell penetrating peptide and aptamer onto the surface of sorafenib (Sora), ursolic acid (UA) and indocyanine green (ICG) condensed nanodrug (USI NPs) via one-pot assembly for targeted and synergistic HCC treatment.

View Article and Find Full Text PDF

CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences.

View Article and Find Full Text PDF
Article Synopsis
  • Thrombus is a major global health issue, and current antithrombotic drugs often lead to bleeding and lack precise targeting capability.
  • A novel nanosystem combining ginsenoside (Rg1) and perfluorohexane (PFH) was created using a core-shell structure with erythrocyte and platelet membranes for improved targeting and immune evasion.
  • This new nanoparticle demonstrated higher effectiveness in reducing oxidative stress and preventing blood clots in animal models, with promising results suggesting safer and more efficient antithrombotic therapies.
View Article and Find Full Text PDF

Tumor microenvironment (TME) stimuli-responsive nanoassemblies are emerging as promising drug delivery systems (DDSs), which acquire controlled release by structural transformation under exogenous stimulation. However, the design of smart stimuli-responsive nanoplatforms integrated with nanomaterials to achieve complete tumor ablation remains challenging. Therefore, it is of utmost importance to develop TME-based stimuli-responsive DDSs to enhance drug-targeted delivery and release at tumor sites.

View Article and Find Full Text PDF

Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform.

View Article and Find Full Text PDF

The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications.

View Article and Find Full Text PDF

Atherosclerosis (AS), with its intricate pathogenesis, is primarily responsible for the development and progression of cardiovascular diseases. Although drug development has made some achievements in AS therapy, limited targeting ability and rapid blood clearance remain great challenges for achieving superior clinical outcomes. Herein, ginsenoside (Re)- and catalase (CAT)-coloaded porous poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were prepared and then surface modified with U937 cell membranes (UCMs) to yield a dual targeted model and multimechanism treatment biomimetic nanosystem (Cat/Re@PLGA@UCM).

View Article and Find Full Text PDF

Rapamycin (RAPA) functions as effectively clinical immunosuppressive agent, its significant tumor growth suppression effect via various pathways in diverse cancers, especially combined with photothermal therapy, is gaining a burgeoning attention. However, its critical defects, low solubility and poor stability, have severely hampered its further application. Herein, RAPA, indocyanine green (ICG) and epigallocatechin gallate (EGCG) serving as chemotherapeutic drug, photosensitizer and biomimetic coatings, respectively, were co-assembled into carrier-free, high biocompatible ICG-RAPA-EGCG nanoparticles (IRE NPs) for synergistic cancer therapy.

View Article and Find Full Text PDF

Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects.

View Article and Find Full Text PDF

Carrageenan (CRG) is a kind of linear sulfated polysaccharide that emerging as a promising substituent in food, pharmaceutics, and cosmetics. In recent years, biological properties of CRG polysaccharides such as antiviral, immunomodulatory, anticoagulant, antioxidant, and anticancer have been broadly studied, however, systematical summary of their structure-property relationships is scarce. Moreover, chemical modification is of great significance to explore biological and physiochemical properties of CRG polysaccharides which should be focused on.

View Article and Find Full Text PDF

The rapid development of CRISPR/Cas9 systems has opened up tantalizing prospects to sensitize cancers to chemotherapy using efficient targeted genome editing, but safety concerns and possible off-target effects of viral vectors remain a major obstacle for clinical application. Thus, the construction of novel nonviral tumor-targeting nanodelivery systems has great potential for the safe application of CRISPR/Cas9 systems for gene-chemo-combination therapy. Here, we report a polyamidoamine-aptamer-coated hollow mesoporous silica nanoparticle for the co-delivery of sorafenib and CRISPR/Cas9.

View Article and Find Full Text PDF

Reported herein is a unified strategy to generate difluoroalkyl radicals from readily prepared α-difluorinated -diols by single electron oxidation. Under microwave irradiation, a catalytic amount of oxidant Cu(OAc) succeeds in the formation of transient difluoroalkyl radicals , for the first time. The reaction features a simple protocol, short reaction time, scalability, and high yield.

View Article and Find Full Text PDF

Thrombosis initiated by abnormal platelet aggregation is a pivotal pathological event that precedes most cases of cardiovascular diseases (CVD). Recently, growing evidence indicates that platelet could be a potential target for CVD prevention. However, as the conventional antithrombotic management strategy, applications of current antiplatelet agents are somewhat limited by their various side effects, such as bleeding risk and drug resistance.

View Article and Find Full Text PDF

Nanosized drug delivery systems have emerged to improve the therapeutic performance of anticancer drugs. Here, an amphiphile-based nanoparticle consisting of amphiphilic prodrug N-[3b-acetoxy-urs-12-en-28-oyl]-amino-2-methylpiperazine was developed (UP12 NPs) with uniform sizes (~100 nm), which possessed the advantages of small molecules and nanomedicine. The positively charged UP12 NPs significantly enhanced the cellular drug uptake on HepG2 cells than negatively charged UA NPs.

View Article and Find Full Text PDF

Warfarin and ginseng have been widely used in the treatment of cardiovascular diseases. However, the clinical safety and effectiveness of herb-drug combination treatment are still controversial. Therefore, it is very essential to probe the interaction between warfarin and ginseng.

View Article and Find Full Text PDF

Nanoformulations with advantages in drug delivery, safety and pharmacodynamics have been booming as a promising strategy for cancer therapy. However, the traditional nanocarrier still suffers from the low drug loading capacity, potential systematic toxicity, unclear metabolism, and other uncertainties. To overcome these issues, carrier-free nanodrugs with desirable bioactivity were developed rapidly and drawn considerable attention.

View Article and Find Full Text PDF

The combination of chemotherapy and photothermal therapy displays improved anti-cancer effects and lower systematic toxicity of a free drug compared with monotherapy. In this study, we designed innovative, carrier-free nanodrugs (PTX/ICG NDs) composed of the chemotherapeutic agent paclitaxel (PTX) and the photosensitizer indocyanine green (ICG) via self-assembly. The nanodrugs not only incorporated two different modalities into one delivery system for combined chemo-photothermal therapy but also enhanced the solubility of PTX without the need for any carrier.

View Article and Find Full Text PDF

S-nitrosocaptopril (CapNO) possesses dual capacities of both Captopril and an NO donor with enhanced efficacy and reduced side effects. CapNO crystals are difficult to make due to its unstable S-NO bond. Here, we report a novel stable S-nitrosocaptopril monohydrate (CapNO·HO) that is stabilized by intermolecular five-membered structure, where one H of HO forms a hydrogen bond with O of the stable resonance zwitterion Cap-S=N-O, and the O in HO forms the dipole-dipole interaction with S through two unpaired electrons.

View Article and Find Full Text PDF

Ursolic acid (UA) is a food-plant-derived natural product which has good anticancer activities and low toxicity. However, the poor water solubility of UA limits its application in clinic. To address this issue, we developed a carrier-free nanodrug by self-assembly of UA.

View Article and Find Full Text PDF

Correction for 'A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways' by Kai Jiang et al., Nanoscale, 2017, 9, 9428-9439.

View Article and Find Full Text PDF