Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination.
View Article and Find Full Text PDFOxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.
View Article and Find Full Text PDFZn-dependent histone deacetylases (HDACs) are enzymes that regulate gene expression by removing acetyl groups from histone proteins. These enzymes are essential in all living systems, playing key roles in cancer treatment and as potential pesticide targets. Previous phylogenetic analyses of HDAC in certain species have been published.
View Article and Find Full Text PDFThe fruit fly Zeugodacus tau (Diptera: Tephritidae) is a major pest of melons and other cucurbits in Southeast Asia. In this study, we used Illumina, Nanopore, and Hi-C sequencing technologies to assemble a reference genome of Z. tau at the chromosomal level.
View Article and Find Full Text PDFOomycetes, particularly those from the genus , are significant threats to global food security and natural ecosystems. Oxathiapiprolin (OXA) is an effective oomycete fungicide that targets an oxysterol binding protein (OSBP), while the binding mechanism of OXA is still unclear, which limits the pesticide design, induced by the low sequence identity of and template models. Herein, we generated the OSBP model of the well-reported using AlphaFold 2 and studied the binding mechanism of OXA.
View Article and Find Full Text PDFAs major forces for modulating protein folding and molecular recognition, cation and π interactions are extensively identified in protein structures. They are even more competitive than hydrogen bonds in molecular recognition, thus, are vital in numerous biological processes. In this review, we introduce the methods for the identification and quantification of cation and π interactions, provide insights into the characteristics of cation and π interactions in the natural state, and reveal their biological function together with our developed database (Cation and π Interaction in Protein Data Bank; CIPDB; http://chemyang.
View Article and Find Full Text PDFThe gene -an RNA splicing factor-can interact with Cyclin D-type binding protein 1 (GICP) in many biological processes, including splicing regulation, cell cycle regulation, and DNA damage repair. In our previous study we performed genome-wide identification and functional analysis of in plant species. The phylogenetic relationships and expression profiles of have not been systematically studied in animals, however.
View Article and Find Full Text PDFEnvironmental stress greatly decreases crop yield. The application of noninvasive techniques is one of the most practical and feasible ways of monitoring the health condition of plants under stress. However, it remains largely unsolved.
View Article and Find Full Text PDFProtein post-translational modifications (PTM) play vital roles in cellular regulation, modulating functions by driving changes in protein structure and dynamics. Exploring comprehensively the influence of PTM on conformational dynamics can facilitate the understanding of the related biological function and molecular mechanism. Currently, a series of excellent computation tools have been designed to analyze the time-dependent structural properties of proteins.
View Article and Find Full Text PDFAs a pivotal regulator of 5' splice site recognition, U1 small nuclear ribonucleoprotein (U1 snRNP)-specific protein C (U1C) regulates pre-mRNA splicing by interacting with other components of the U1 snRNP complex. Previous studies have shown that U1 snRNP and its components are linked to a variety of diseases, including cancer. However, the phylogenetic relationships and expression profiles of U1C have not been studied systematically.
View Article and Find Full Text PDFIncreasing demands for efficient and versatile chemical reactions have prompted innovations in enzyme engineering. A major challenge in engineering α-ketoglutarate-dependent oxygenases is to develop a rational strategy which can be widely used for directly evolving the desired mutant to generate new products. Herein, we report a strategy for rational redesign of a model enzyme, 4-hydroxyphenylpyruvate dioxygenase (HPPD), based on quantum mechanics/molecular mechanics (QM/MM) calculation and molecular dynamic simulations.
View Article and Find Full Text PDFEukaryotic cells can expand their coding ability by using their splicing machinery, spliceosome, to process precursor mRNA (pre-mRNA) into mature messenger RNA. The mega-macromolecular spliceosome contains multiple subcomplexes, referred to as small nuclear ribonucleoproteins (snRNPs). Among these, U1 snRNP and its central component, U1-70K, are crucial for splice site recognition during early spliceosome assembly.
View Article and Find Full Text PDFIn the 21st century, drought has been the main cause of shortages in world grain production and has created problems with food security. Abscisic acid (ABA) is a key plant hormone involved in the response to abiotic stress, especially drought. The pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory component of abscisic acid receptor (RCAR) family of proteins (simplified as PYLs) is a well-known ABA receptor family, which can be divided into dimeric and monomeric forms.
View Article and Find Full Text PDFCoronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still a pandemic around the world. Currently, specific antiviral drugs to control the epidemic remain deficient. Understanding the details of SARS-CoV-2 structural biology is extremely important for development of antiviral agents that will enable regulation of its life cycle.
View Article and Find Full Text PDFHerbicide resistance has become one of the foremost problems in crop production worldwide. New herbicides are required to manage weeds that have evolved resistance to the existing herbicides. However, relatively few herbicides with new modes of action (MOAs) have been discovered in the past two decades.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) play vital roles in regulating biological processes, such as cellular and signaling pathways. Hotspots are certain residues located at protein-protein interfaces that contribute more in protein-protein binding than other residues. Research on the mutational effects of hotspots is important for understanding basic aspects of protein association.
View Article and Find Full Text PDFThe phytohormone abscisic acid (ABA) is the best-known stress signaling molecule in plants. ABA protects sessile land plants from biotic and abiotic stresses. The conserved pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR) perceives ABA and triggers a cascade of signaling events.
View Article and Find Full Text PDFThe cannabinoid (CB) receptors (CBR and CBR) represent a promising therapeutic target for several indications such as nociception and obesity. The ligands with nonselectivity can be traced to the high similarity in the binding sites of both cannabinoid receptors. Therefore, the need for selectivity, potency, and G-protein coupling bias has further complicated the design of desired compounds.
View Article and Find Full Text PDFBackground: Among eukaryotic organisms, alternative splicing is an important process that can generate multiple transcripts from one same precursor messenger RNA, which greatly increase transcriptome and proteome diversity. This process is carried out by a super-protein complex defined as the spliceosome. Specifically, splicing factor 1/branchpoint binding protein (SF1/BBP) is a single protein that can bind to the intronic branchpoint sequence (BPS), connecting the 5' and 3' splice site binding complexes during early spliceosome assembly.
View Article and Find Full Text PDFJ Agric Food Chem
September 2020
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets.
View Article and Find Full Text PDF