Unlabelled: Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection.
View Article and Find Full Text PDFInfectious hematopoietic necrosis virus (IHNV) is the causative pathogen of infectious hematopoietic necrosis, outbreaks of which are responsible for significant losses in rainbow trout aquaculture. Strains of IHNV isolated worldwide have been classified into five major genogroups, J, E, L, M, and U. To date, comparative transcriptomic analysis has only been conducted individually for the J and M genogroups.
View Article and Find Full Text PDFDDX3, a member of the DEAD-box RNA helicase family and has highly conserved ATP-dependent RNA helicase activity, has important roles in RNA metabolism and innate anti-viral immune responses. In this study, five transcript variants of the DDX3 gene were cloned and characterized from rainbow trout (Oncorhynchus mykiss). These five transcript variants of DDX3 encoded proteins were 74.
View Article and Find Full Text PDFSalmonids can be co-infected by infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) under natural or experimental conditions. To reveal the influence of IPNV on IHNV in co-infections, CHSE-214 cells were inoculated with IPNV at different time intervals prior to or after IHNV infection. Propagation of IHNV was determined by an immunofluorescence antibody test, real-time quantitative polymerase chain reaction, flow cytometry, and virus titration.
View Article and Find Full Text PDFInfectious pancreatic necrosis virus (IPNV) and infectious hematopoietic necrosis virus (IHNV) are two common viral pathogens that cause severe economic losses in all salmonid species in culture, but especially in rainbow trout. Although vaccines against both diseases have been commercialized in some countries, no such vaccines are available for them in China. In this study, a recombinant virus was constructed using the IHNV U genogroup Blk94 virus as a backbone vector to express the antigenic gene, VP2, from IPNV via the reverse genetics system.
View Article and Find Full Text PDFInfectious hematopoietic necrosis virus (IHNV) was developed as a vector to aid the construction of vaccines against viral diseases such as viral hemorrhagic septicemia virus, spring viremia of carp virus, and influenza virus H1N1. However, the optimal site for foreign gene expression in the IHNV vector has not been determined. In the present study, five recombinant viruses with the green fluorescence protein (GFP) gene inserted into different genomic junction regions of the IHNV genomic sequence were generated using reverse genetics technology.
View Article and Find Full Text PDFReverse genetics systems are powerful tools for understanding the virulence mechanisms and gene functions of negative-sense RNA viruses. The reverse genetics systems commonly used for recombinant infectious hematopoietic necrosis virus (IHNV) are based on vaccinia virus infection. To avoid the potential biological safety risks associated with vaccinia virus, a recombinant IHNV virus strain Sn1203 (rIHNV-Sn1203) was rescued in this study using a mammalian cell line, BHK-21.
View Article and Find Full Text PDFInfectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Recent work demonstrated that autophagy plays an important role in pathogen invasion by activating innate and adaptive immunity. This study investigated the relationship between IHNV and autophagy in epithelioma papulosum cyprini cells.
View Article and Find Full Text PDFInfectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Because oral vaccines induce more efficient mucosal immunity than parenteral immunization, an oral vaccine was developed with an improved yeast cell surface display technology to induce an immune response to IHNV. The oral yeast vaccine, designated EBY100/pYD1-bi-G, was delivered orally to rainbow trout (Oncorhynchus mykiss) on days 1 and 32, and the nonspecific and specific immune responses were measured 50days after the first vaccination.
View Article and Find Full Text PDFBackground: The development of oral vaccines using yeast surface display technology is an area of intensive study in vaccine development, but the protein level displayed on yeast surfaces is not currently high enough to obtain a robust immune response.
Methods: To address this issue, we established an efficient and simple method of increasing the level of displayed protein on the yeast cell surface. We used the single chain variable fragment (scFv) of an antibody against the infectious hematopoietic necrosis virus isolate Sn1203 as a target display protein.
Infectious pancreatic necrosis (IPN) is a significant disease of farmed salmonids resulting in direct economic losses due to high mortality in China. However, no gene sequence of any Chinese infectious pancreatic necrosis virus (IPNV) isolates was available. In the study, moribund rainbow trout fry samples were collected during an outbreak of IPN in Yunnan province of southwest China in 2013.
View Article and Find Full Text PDFInfectious pancreatic necrosis is a significant disease of farmed salmonids in China. In this study, a single chain variable fragment (scFv) antibody library derived from rainbow trout (Oncorhynchus mykiss) and viral protein VP2 of a Chinese infectious pancreatic necrosis virus (IPNV) isolate ChRtm213 were co-expressed by a bacterial display technology. The library was subjected to three rounds of screening by flow cytometry (FCM) to select IPNV specific antibodies.
View Article and Find Full Text PDFThe glycoprotein of infectious hematopoietic necrosis virus was truncated to ten overlapping fragments. All fragments were displayed on the inner membrane of the Escherichia coli periplasm. After disruption of the outer membrane, spheroplasts that had anchored with the glycoprotein fragment were incubated with an anti-glycoprotein polyclonal antibody.
View Article and Find Full Text PDFThis study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on NAFLD in MSG-IR mice and to provide mechanism insights into its therapeutic effect. The MSG-IR mice with insulin resistance were treated with high dose (0.1 micromol.
View Article and Find Full Text PDFInfectious bursal disease is an economically important disease that affects chickens worldwide. Here, a recombinant single chain variable fragment (scFv) antibody library derived from chickens immunized with VP2 protein of infectious bursal disease virus (IBDV) was constructed. The library was subjected to three rounds of screening by flow cytometry against VP2 protein through a bacteria display technology, resulting in the enrichment of scFv.
View Article and Find Full Text PDFThis study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on hypertension induced by insulin resistance in rats and to provide mechanistic insights into its therapeutic effect. Male Sprague-Dawley (SD) rats were fed with high-fructose (10%) water to develop mild hypertensive models within 4 weeks, then randomized into 4 groups: model control, FGF21 0.25, 0.
View Article and Find Full Text PDFInsulin is the most common medicine used for diabetic patients, unfortunately, its effective time is short, even the long-acting insulin cannot obtain a satisfactory effect. Fibroblast growth factor (FGF)-21 is a recently discovered glucose mediator and expected to be a potential anti-diabetic drug that does not rely on insulin. In this study, db/db mice were used as the type 2 diabetic model to examine whether mFGF-21 has the long-term blood lowering effect on the animal model.
View Article and Find Full Text PDFFibroblast growth factor 21 (FGF21) is a member of FGF family. It has been demonstrated that FGF21 is an independent, safe and effective regulator of blood glucose levels in vivo. In order to improve the activity of FGF21, we exchanged the beta10-beta12 domain of the human FGF21 with that of the mouse FGF21 to construct a novel FGF21 gene (named hmFGF21), and then subcloned hmFGF21 gene into the SUMO expression vector to create pSUMO-hmFGF21 and transformed it into E.
View Article and Find Full Text PDF