Publications by authors named "Jing-Zhi Shang"

Defect engineering and the non-covalent interaction strategy allow for dramatically tuning the optoelectronic features of graphene. Herein, we theoretically investigated the intrinsic mechanism of non-covalent interactions between pentagon-octagon-pentagon (5-8-5) defect graphene (DG) and absorbed molecules, tetrathiafulvalene (TTF), perfluoronaphthalene (FNa), tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), through geometry, distance, interaction energy, Mulliken charge distribution, terahertz frequency vibration, visualization of the interactions, charge density difference, electronic transition behaviour, band structure and density of state. All the calculations were performed using density functional theory including a dispersion correction (DFT-D).

View Article and Find Full Text PDF