Reduction of carbon dioxide (CO) by renewable electricity to produce multicarbon chemicals, such as ethylene (CH), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier.
View Article and Find Full Text PDFCarbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C) chemicals, posing a grand challenge to achieve a single C product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu(OH)NO, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption.
View Article and Find Full Text PDF