Publications by authors named "Jing-Lin Zuo"

Electrocatalytic Nitrate Reduction to Ammonia (NORR) offers a promising solution to both environmental pollution and the sustainable energy conversion. Here we propose an efficient cascade catalytic mechanism based on a dual Zn-NiS sites, orderly assembled in a redox-active metal-organic framework structure, which separately promotes the reaction kinetics of nitrate-to-nitrite and nitrite-to-ammonia conversions. Specifically, the Zn clusters adsorb and selectively reduce the NO to NO , whereas [NiS] acts as an analogue to the ferredoxins, subsequently boosts the reduction of NO to produce NH.

View Article and Find Full Text PDF

The rational design of porous covalent organic frameworks (COFs) with high conductivity and reversible redox activity is the key to improving their performance in sodium-ion batteries (SIBs). Herein, we report a series of COFs (FPDC-TPA-COF, FPDC-TPB-COF, and FPDC-TPT-COF) based on an organosulfur linker, (trioxocyclohexane-triylidene)tris(dithiole-diylylidene))hexabenzaldehyde (FPDC). These COFs feature two-dimensional crystalline structures, high porosity, good conductivity, and densely packed redox-active sites, making them suitable for energy storage devices.

View Article and Find Full Text PDF
Article Synopsis
  • - Integrated donor-acceptor photothermal units and specific catalytic sites into a metal-organic framework.
  • - Created a system that leverages photothermal effects for enhanced catalytic activity.
  • - Achieved efficient conversion of carbon monoxide (CO) into cyclic carbonates using this advanced framework.
View Article and Find Full Text PDF

The electrocatalytic nitrate reduction reaction (NITRR) holds great promise for purifying wastewater and producing valuable ammonia (NH). However, the lack of efficient electrocatalysts has impeded the achievement of highly selective NH synthesis from the NITRR. In this study, we report the design and synthesis of two polynuclear Co-cluster-based coordination polymers, {[Co(TCPPDA)(HO)]·(HO)(DMF)} and {Co(TCPPDA)[(CH)NH]·(HO)(DMF)} (namely, and ), which possess distinct coordination motifs with well-defined porosity, high-density catalytic sites, accessible mass transfer channels, and nanoconfined chemical environments.

View Article and Find Full Text PDF

ConspectusThe directed synthesis and functionalization of porous crystalline materials pose significant challenges for chemists. The synergistic integration of different functionalities within an ordered molecular material holds great significance for expanding its applications as functional materials. The presence of coordination bonds connected by inorganic and organic components in molecular materials can not only increase the structural diversity of materials but also modulate the electronic structure and band gap, which further regulates the physical and chemical properties of molecular materials.

View Article and Find Full Text PDF

The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-HTTFTB)(DMF)(HO)] (Co-m-TTFTB), and {[Ni(m-HTTFTB)(CHCHOH)(HO)]·(HO)} (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)(m-HTTFTB)] chains contribute to a significant improvement in their electrical conductivities.

View Article and Find Full Text PDF

Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diodes (CP-OLEDs) and 3D displays. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of the frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase the efficiency of molecules.

View Article and Find Full Text PDF

A stable two-dimensional radical hydrogen-bonded metal-organic framework, constructed using a modified tetrathiafulvalene-tetrabenzoate ((2-Me)-HTTFTB) linker and Cd ions, exhibits a high electrical conductivity of 4.1 × 10 S m and excellent photothermal conversion with a temperature increase of 137 °C in 15 s under the irradiation of a 0.7 W cm 808 nm laser.

View Article and Find Full Text PDF

Polymer materials formed by conventional metal-ligand bonds have very low branch functionality, the crosslinker of such polymer usually consists of 2-4 polymer chains and a single metal ion. Thus, these materials are weak, soft, humidity-sensitive, and unable to withstand their shape under long-term service. In this work, a new hyperbranched metal-organic cluster (MOC) crosslinker containing up to 16 vinyl groups is prepared by a straightforward coordination reaction.

View Article and Find Full Text PDF

The shuttling of polysulfides on the cathode and the uncontrollable growth of lithium dendrites on the anode have restricted the practical application of lithium-sulfur (Li-S) batteries. In this study, a metal-coordinated 3D covalent organic framework (COF) with a homogeneous distribution of nickel-bis(dithiolene) and N-rich triazine centers (namely, NiS-TAPT) was designed and synthesized, which can serve as bifunctional hosts for both sulfur cathodes and lithium anodes in Li-S batteries. The abundant Ni centers and N-sites in NiS-TAPT can greatly enhance the adsorption and conversion of the polysulfides.

View Article and Find Full Text PDF
Article Synopsis
  • Designing adaptive materials that change their mechanical properties in response to external factors can prevent failure and increase their lifespan.
  • Current adaptive polymers face issues like low load capacity, irreversible changes, high costs, and limited responsiveness.
  • The introduction of dynamic coordination bonds led to the creation of new polymers (PBMBD-Fe and PBMBD-Co) that are temperature- and rate-responsive, showcasing benefits like improved energy dissipation, self-healing, and 3D printing capabilities, making them viable for durable and customizable impact resistance applications.
View Article and Find Full Text PDF

Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF.

View Article and Find Full Text PDF
Article Synopsis
  • - Nitrate-containing industrial wastewater threatens global food security and public health, and traditional methods of treatment face challenges due to acidic conditions found in these wastes.
  • - Electrocatalytic nitrate reduction shows a more sustainable solution, converting nitrates into valuable ammonia (NH) with high efficiency and stability, particularly under acidic conditions.
  • - The study introduces innovative Fe M trinuclear cluster metal-organic frameworks (MOFs) that effectively reduce nitrates in acidic environments, achieving significant ammonia yield, selectivity, and producing ammonium sulfate directly for use as fertilizer, enhancing wastewater treatment processes.
View Article and Find Full Text PDF

Modulation of the ligands and coordination environment of metal-organic frameworks (MOFs) has been an effective and relatively unexplored avenue for improving the anode performance of lithium-ion batteries (LIBs). In this study, three MOFs are synthesized, namely, M (o-TTFOB)(bpm) (H O) (where M is Mn, Zn, and Cd; o-H TTFOB is ortho-tetrathiafulvalene octabenzoate; and bpm is 2,2'-bipyrimidine), based on a new ligand o-H TTFOB with two adjacent carboxylates on one phenyl, which allows us to establish the impact of metal coordination on the performance of these MOFs as anode materials in LIBs. Mn-o-TTFOB and Zn-o-TTFOB, with two more uncoordinated oxygen atoms from o-TTFOB , show higher reversible specific capacities of 1249 mAh g and 1288 mAh g under 200 mA g after full activation.

View Article and Find Full Text PDF

Stable metal-organic frameworks (MOFs) with mesopores (2-50 nm) are promising platforms for immobilizing nanosized functional compounds, such as metal-oxo clusters, metal-sulfide quantum dots, and coordination complexes. However, these species easily decompose under acidic conditions or high temperatures, hindering their encapsulation in stable MOFs, which are usually synthesized under harsh conditions involving excess acid modulators and high temperatures. Herein, we report a route for the room-temperature and acid-modulator-free synthesis of stable mesoporous MOFs and MOF catalysts with acid-sensitive species encapsulated: (1) we initially construct a MOF template by connecting stable Zr clusters with labile Cu-bipyridyl moieties; (2) Cu-bipyridyl moieties are subsequently exchanged by organic linkers to afford a stable version of Zr-MOFs; (3) acid-sensitive species, including polyoxometalates (POMs), CdSeS/ZnS quantum dots, and Cu-coordination cages, can be encapsulated into the MOFs during step 1.

View Article and Find Full Text PDF

Tetrathiafulvalene (TTF) and Ni-bis(dithiolene) are typical conductive units widely studied in electronics, optics, and photochemistry. However, their applications in near-infrared (NIR) photothermal conversion are often limited by insufficient NIR absorption and low chemical/thermal stability. Herein, we integrate TTF and Ni-bis(dithiolene) into a covalent organic framework (COF) with stable and efficient NIR and solar photothermal conversion performance.

View Article and Find Full Text PDF

Room-temperature phosphorescence (RTP) polymers, whose emission can persist for a long period after photoexcitation, are of great importance for practical applications. Herein, dynamic covalent boronic ester linkages with internal B-N coordination are incorporated into a commercial epoxy matrix. The reversible dissociation of B-N bonds upon loading provides an efficient energy dissipation pathway for the epoxy network, while the rigid epoxy matrix can inhibit the quenching of triplet excitons in boronic esters.

View Article and Find Full Text PDF

The rational design of efficient and stable catalysts for the oxygen reduction reaction and oxygen evolution reaction (ORR/OER) is the key to improving Li-O battery performance. Here, we report the construction of ORR/OER bifunctional cathode catalysts in a covalent organic framework (COF) platform by simultaneously incorporating Ni-bis(dithiolene) and Co-porphyrin units. The resulting bimetallic Ni/Co-COF exhibits high surface area, fairly good electrical conductivity, and excellent chemical stability.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs), with diverse metal nodes and designable organic linkers, offer unique opportunities for the rational engineering of semiconducting properties. In this work, we report a mixed-linker conductive MOF system with both tetrathiafulvalene and Ni-bis(dithiolene) moieties, which allows the fine-tuning of electronic structures and semiconductive characteristics. By continuously increasing the molar ratio between tetrathiafulvalene and Ni-bis(dithiolene), the switching of the semiconducting behaviors from n-type to p-type was observed along with an increase in electrical conductivity by 3 orders of magnitude (from 2.

View Article and Find Full Text PDF

Ammonia production plays a central role in modern industry and agriculture with a continuous surge in its demand, yet the current industrial Haber-Bosch process suffers from low energy efficiency and accounts for high carbon emissions. Direct electrochemical conversion of nitrate to ammonia therefore emerges as an appealing approach with satisfactory sustainability while reducing the environmental impact from nitrate pollution. To this end, electrocatalysts for efficient conversion of eight-electron nitrate to ammonia require collective contributions at least from high-density reactive sites, selective reaction pathways, efficient multielectron transfer, and multiproton transport processes.

View Article and Find Full Text PDF

The design of highly electron-active and stable heterogeneous catalysts for the ambient nitrogen reduction reaction is challenging due to the inertness of the N molecule. Here, we report the synthesis of a zinc-based coordination polymer that features bridging dinitrogen anionic ligands, {[Zn(L)(N)(TCNQ-TCNQ)]·(TCNQ)} (L is tetra(isoquinolin-6-yl)tetrathiafulvalene and TCNQ is tetracyanoquinodimethane), and show that it is an efficient photocatalyst for nitrogen fixation under an ambient atmosphere. It exhibits an ammonia conversion rate of 140 μmol g h and functions well also with unpurified air as the feeding gas.

View Article and Find Full Text PDF

Chiral boron/nitrogen doped multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising for highly efficient and color-pure circularly polarized organic light-emitting diodes (CP-OLEDs). Herein, we report two pairs of MR-TADF materials (Czp-tBuCzB, Czp-POAB) based on planar chiral paracyclophane with photoluminescence quantum yields of up to 98 %. The enantiomers showed symmetric circularly polarized photoluminescence spectra with dissymmetry factors |g | of up to 1.

View Article and Find Full Text PDF

Herein, we report two multiple-resonance thermally activated delayed fluorescence emitters (VTCzBN and TCz-VTCzBN) based on indolo[3,2,1-jk]carbazole unit and boron-nitrogen skeletons, whose emissions peaking at 496 and 521 nm with full width at half maximum of 34 and 29 nm, respectively. Meanwhile, fast rate constants of reverse intersystem crossing of above 10  s are obtained due to small singlet-triplet energy gaps and large spin-orbital coupling values. Notably, planar molecular structures along the transition dipole moment direction endow them with high horizontal emitting dipole ratios of up to 94 %.

View Article and Find Full Text PDF

The realization of luminescent materials with narrowband and circularly polarized luminescence (CPL) is of great significance for the development of future optical and photonic devices. Herein, through a steric-hindrance-assisted dual-core strategy, two pairs of chiral dual-core multiple resonance thermally activated delayed fluorescence (MR-TADF) materials (R/S-DOBN and R/S-DOBNT) are directly constructed by the bonding of two organoboron MR-TADF monocores (SOBN and SOBNT) with carbazole/3,6-di-tert-butyl-9H-carbazole and phenol derivative as donors, realizing obvious CPL and narrowband emissions. Furthermore, the dual-core effect in the prepared R/S-DOBN and R/S-DOBNT increases the transition oscillator strength two times more than that of a monocore structure, while maintaining the ultrapure blue emissions peaking at 453 and 459 nm with a narrower full-width at half-maximum of 21 nm through reorganization energy reduction.

View Article and Find Full Text PDF

Combining the chemistry of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) can bring new opportunities for the design of advanced materials with enhanced tunability and functionality. Herein, we constructed two COFs based on Ni-bis(dithiolene) units and imine bonds, representing a bridge between traditional MOFs and COFs. The Ni-bis(dithiolene)tetrabenzaldehyde as the 4-connected linker was initially synthesized, which was further linked by 4-connected tetra(aminophenyl)pyrene (TAP) or 3-connected tris(aminophenyl)amine (TAA) linkers into two COFs, namely, Ni-TAP and Ni-TAA.

View Article and Find Full Text PDF