Publications by authors named "Jing-Hong Wen"

Article Synopsis
  • Carbon anions are created by adding Grignard reagents to vinyl phosphinates, leading to new organophosphorus compounds with varied carbon structures.
  • Different electrophilic reagents, such as acids and alkyl halides, were utilized in the modification process, resulting in various products, including bis-alkylated compounds.
  • Applying the reaction to vinyl phosphine oxides resulted in substitution reactions or polymerization instead of just addition, highlighting the versatility of the methods.
View Article and Find Full Text PDF

To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN sites and wrapped Co P nanoclusters as dual-active centers (Co P/CoN @NSC-500). A crystalline {Co } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination.

View Article and Find Full Text PDF

Three-dimensional (3D) micro- and nanostructural characterization using scanning electron microscope (SEM) and electron-solid interaction simulations (ESIS) has attracted broad interest in various research fields. However, 3D SEM-ESIS still faces key challenges in characterizing and modelling complex microstructures. In this paper, a new grid-based simulation scheme is developed to enable ESIS of complex microstructures.

View Article and Find Full Text PDF

A diastereomeric mixture of secondary phosphine oxide is stereospecifically converted to chlorophosphine salt by treatment with oxalyl chloride, which stereoselectively affords P-inverted or retained tertiary phosphines, depending on the substitution with aliphatic or aromatic Grignard reagents, respectively, in high to 99% yield and 99:1 dr. The repulsion of π-electron on aryl to lone electron pair on phosphorus is proposed for the P-retained substitution.

View Article and Find Full Text PDF

The secondary R-(-)-menthyl alkylphosphine oxide was confirmed as configurationally stable toward base and was used in base-promoted alkylation, stereospecifically affording P-retained bis or functional tertiary phosphine oxides in excellent yields. The alkylated products were deoxygenated using oxalyl chloride followed by ZnCl-NaBH to form P-inversed bidentate phosphine boranes in high stereoselectivities.

View Article and Find Full Text PDF

Functionalized P,C-stereogenic tertiary phosphine oxides were prepared by the addition of (RP)-menthyl phenylphosphine oxide to activated olefins, in high drP and drC, and were isolated in excellent yields. The reaction was readily catalyzed by Ca(OH)2 or occurred with gentle heating. A wide range of substrates, including vinyl ketones, esters, nitriles, and nitro alkenes, can be used in the reaction.

View Article and Find Full Text PDF

P,C-Stereogenic α-amino phosphine oxides were prepared from the addition of (RP )-menthyl phenyl phosphine oxide to chiral aldimines under neat condition at 80 °C in up to 91:9 drC and 99% yields. The diastereoselectivity was mainly induced by chiral phosphorus that showed matched or mismatched induction with (S)- or (R)-aldimines, respectively.

View Article and Find Full Text PDF