Studying the ultrafast dynamics of ionized aqueous biomolecules is important for gaining an understanding of the interaction of ionizing radiation with biological matter. Guanine plays an essential role in biological systems as one of the four nucleobases that form the building blocks of deoxyribonucleic acid (DNA). Guanine radicals can induce oxidative damage to DNA, particularly due to the lower ionization potential of guanine compared to the other nucleobases, sugars, and phosphate groups that are constituents of DNA.
View Article and Find Full Text PDFThe phenylalanine radical (Phe˙) has been proposed to mediate biological electron transport (ET) and exhibit long-lived electronic coherences following attosecond photoionization. However, the coupling of ultrafast structural reorganization to the oxidation/ionization of biomolecules such as phenylalanine remains unexplored. Moreover, studies of ET involving Phe˙ are hindered by its hitherto unobserved electronic spectrum.
View Article and Find Full Text PDF