Remote photoplethysmography (rPPG) is an emerging non-contact method for monitoring cardiovascular health based on facial videos. The quality of the captured videos largely determines the efficacy of rPPG in this application. Traditional rPPG techniques, while effective for heart rate (HR) estimation, often produce signals with an inadequate signal-to-noise ratio (SNR) for reliable vital sign measurement due to artifacts like head motion and measurement noise.
View Article and Find Full Text PDFBioengineering (Basel)
March 2024
Blood oxygen saturation (SpO) is an essential physiological parameter for evaluating a person's health. While conventional SpO measurement devices like pulse oximeters require skin contact, advanced computer vision technology can enable remote SpO monitoring through a regular camera without skin contact. In this paper, we propose novel deep learning models to measure SpO remotely from facial videos and evaluate them using a public benchmark database, VIPL-HR.
View Article and Find Full Text PDFRemote Photoplethysmography (rPPG) is a contactless method that enables the detection of various physiological signals from facial videos. rPPG utilizes a digital camera to detect subtle changes in skin color to measure vital signs such as heart rate variability (HRV), an important biomarker related to the autonomous nervous system. This paper presents a novel contactless HRV extraction algorithm, WaveHRV, based on the Wavelet Scattering Transform technique, followed by adaptive bandpass filtering and inter-beat-interval (IBI) analysis.
View Article and Find Full Text PDFBlood pressure (BP) determines whether a person has hypertension and offers implications as to whether he or she could be affected by cardiovascular disease. Cuff-based sphygmomanometers have traditionally provided both accuracy and reliability, but they require bulky equipment and relevant skills to obtain precise measurements. BP measurement from photoplethysmography (PPG) signals has become a promising alternative for convenient and unobtrusive BP monitoring.
View Article and Find Full Text PDFHeart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin through a video camera. Given the vast potential of this technology in the future of digital healthcare, remote monitoring of physiological signals has gained significant traction in the research community.
View Article and Find Full Text PDF