High mobility group protein B1 (HMGB1) acts as a pathogenic inflammatory response to mediate ranges of conditions such as epilepsy, septic shock, ischemia, traumatic brain injury, Parkinson's disease, Alzheimer's disease and mass spectrometry. HMGB1 promotes inflammation during sterile and infectious damage and plays a crucial role in disease development. Mobilization from the nucleus to the cytoplasm is the first important step in the release of HMGB1 from activated immune cells.
View Article and Find Full Text PDFCold exposure exerts negative effects on hippocampal nerve development in adolescent mice, but the underlying mechanisms are not fully understood. Given that ubiquitination is essential for neurodevelopmental processes, we attempted to investigate the effects of cold exposure on the hippocampus from the perspective of ubiquitination. By conducting a ubiquitinome analysis, we found that cold exposure caused changes in the ubiquitination levels of a variety of synaptic-associated proteins.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
September 2022
To study the mechanisms of cold exposure mediated ileum mechanical barrier injury in mice. Twenty mice were randomly divided into the control and cold exposure groups. Both the control and cold exposure groups were placed in the climate room with (24±2)℃ and 40% humidity.
View Article and Find Full Text PDFIntroduction: Enolases are enzymes in the glycolytic pathway, which catalyse the reversible conversion of D-2-phosphoglycerate into phosphoenol pyruvate in the second half of the pathway. In this research, the effects of α-enolase () on steroid reproductive-related hormone receptor expression and on hormone synthesis of primary granulosa cells from goose F1 follicles were studied.
Material And Methods: Primary granulosa cells from the F1 follicles of eight healthy 8-month-old Zi geese were separated and cultured.
Chronic stress can damage homeostasis and induce various primary diseases. Although chronic cold stress is becoming an increasing problem for people who must work or live in extreme environments, risk-induced diseases in the central nervous system remain unstudied. Male C57BL/6 mice were exposed to an environment of 4 °C, 3 h per day for 1, 2, and 3 weeks and homeostasis in the hippocampus and neuronal apoptosis were evaluated by Western blotting, immunohistochemistry, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and immunofluorescence.
View Article and Find Full Text PDFStress is a nonspecific response to adverse circumstances and chronic stress can destroy homeostasis, leading to various primary diseases. Although chronic cold stress is becoming increasingly important for individuals living or working in extreme environments, the risk of associated disorders of the central nervous system remains unstudied. Here, male C57BL/6 mice were exposed to a temperature of 4 °C, for three hours each day for one, two or three weeks.
View Article and Find Full Text PDFCold stress can induce neuroinflammation in the hippocampal dentate gyrus (DG), but the mechanism underlying neuronal apoptosis induced by cold stress is not well-understood. To address this issue, male and female C57BL/6 mice were exposed to a temperature of 4 °C for 3 h per day for 1 week, and glial cell activation, neuronal apoptosis, and neuroinflammation were evaluated by western blotting, immunofluorescence, terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate (dUTP) nick end labeling, Nissl staining, and immunohistochemistry. Additionally, BV2 cells were treated with different concentrations of cortisol (CORT) for 3 h to mimic stress and molecular changes were assessed by western blotting, immunofluorescence, and co-immunoprecipitation.
View Article and Find Full Text PDFCold stress can induce neuronal apoptosis in the hippocampus, but the internal mechanism involving neuronal loss induced by cold stress is not clear. In vivo, male and female C57BL/6 mice were exposed to 4 °C, 3 h per day for 1 week. In vitro, HT22 cells were treated with different concentrations of cortisol (CORT) for 3 h.
View Article and Find Full Text PDFStress induces many non-specific responses in the hippocampus, especially during adolescence. Low environmental temperature is known to induce stress, but its influence on the hippocampus, especially in adolescent mice is not clear. We compared apoptotic-related protein levels and MAPK signaling pathway activation in hippocampal neurons of adolescent mice under low temperature conditions (4 °C for 12 h) with western blotting and immunohistochemistry.
View Article and Find Full Text PDFStress induces many different sex-specific physiological and psychological responses during adolescence. Although the impact of certain brain stressors has been reported in the literature, the influence of cold stress on the mechanisms underlying hippocampal neurotransmitter disorder and neuroinflammation remain unstudied. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures, 3 h per day for 1 week.
View Article and Find Full Text PDFStress induces many non-specific inflammatory responses in the mouse brain, especially during adolescence. Although the impact of stress on the brain has long been reported, the effects of cold stress on hippocampal neuroinflammation in adolescent mice are not well understood; furthermore, whether these effects are gender specific are also not well established. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures for 12 h, after which behavior was assessed using the open field test.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
February 2017
Objective: To research the hormone secretion levels of progesterone and estrogen and the gene expression levels of two go-nadotropin receptors follicle stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in granular cells of laying hen, and the effect of culture time on the levels of hormone secretion and expression of related receptor gene in granulosa cells was inferred.
Methods: The experiment using the method of cells culture , the granular cells supernatants of hens were collected at 0 h, 24 h, 48 h, 72 h, 96 h, the progesterone and estrogen concentrations in cell supernatants were determined by ELISA kits, and detected the expression of FSHR and LHR gene in granular cells by real-time fluorescent quantitative PCR.
Results: The results showed that the progesterone and estrogen secretion reduced in the early culture of 0 h~48 h( < 0.
The study was aimed to observe mir-210 expression in liver tissue of acute cold stress rat and predict the function of mir-210 in cold stress. Thirty SPF Wistar male rats which were 12-week-old and weighed (340 ± 20) g were used. The rats were pre-fed in normal room temperature for one week, and then were randomly divided into acute cold stress group at (4 ± 0.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
September 2015
Objective: Isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry were used to screen differentially expressed plasma proteins in cold stress rats.
Methods: Thirty health SPF Wistar rats were randomly divided into cold stress group A and control group B, then A and B were randomly divided into 3 groups (n = 5): A1, A2, A3 and B1, B2, B3. The temperature of room raising was (24.
The objective of this work was to elucidate the gene expression profiles of luteinizing hormone (LH), prolactin (PRL) and their receptors during the developmental and egg laying stage. The expression of genes encoding pituitary LH and PRL, as well as those for the ovarian LH receptor (LHR) and PRL receptor (PRLR), was determined by quantitative real-time PCR in Zi geese on day 1 and at 1, 2, 3, 4, 5, 6, 7 and 8 months of age, respectively. The expression of LH and LHR fluctuated and increased as the geese aged.
View Article and Find Full Text PDF