The Allium genus is cultivated globally as vegetables, condiments, or medicinal plants and is characterized by large genomes and strong pungency. However, the genome evolution and genomic basis underlying their unique flavor formation remain poorly understood. Herein, we report an 11.
View Article and Find Full Text PDFS-nitrosoglutathione reductase (GSNOR) is considered as a critical regulator of plant stress tolerance for its impacts on protein -nitrosylation through regulation of the -nitrosothiol (SNO) level. However, the mechanism of GSNOR-mediated stress tolerance is still obscure. Here, we found that GSNOR activity was induced by high temperature in tomato () plants, whereas mRNA level of exhibited little response.
View Article and Find Full Text PDFBisphenol A (BPA), a widely distributed organic compound, is toxic to animals and plants. Here we show the mechanism of BPA detoxification by melatonin (MEL) in tomato, which is otherwise poorly understood in plants. BPA treatment decreased the quantum yield of photosystem II (Fv/Fm) and increased the membrane lipid peroxidation and reactive oxygen species (ROS) accumulation dose-dependently, whereas exogenous MEL alleviated the BPA effects on Fv/Fm, lipid peroxidation, ROS accumulation and BPA uptake.
View Article and Find Full Text PDFCOP9 signalosome (CSN) is an evolutionarily conserved regulatory component of the ubiquitin/proteasome system that plays crucial roles in plant growth and stress tolerance; however, the mechanism of COP9-mediated resistance to root-knot nematodes (RKNs, e.g. ) is not fully understood in plants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Active DNA demethylation is critical for controlling the DNA methylomes in plants and mammals. However, little is known about how DNA demethylases are recruited to target loci, and the involvement of chromatin marks in this process. Here, we identify 2 components of the SWR1 chromatin-remodeling complex, PIE1 and ARP6, as required for ROS1-mediated DNA demethylation, and discover 2 SWR1-associated bromodomain-containing proteins, AtMBD9 and nuclear protein X1 (NPX1).
View Article and Find Full Text PDFAutophagy, an innate cellular destructive mechanism, plays crucial roles in plant development and responses to stress. Autophagy is known to be stimulated or suppressed by multiple molecular processes, but the role of phytohormone signaling in autophagy is unclear. Here, we demonstrate that the transcripts of autophagy-related genes () and the formation of autophagosomes are triggered by enhanced levels of brassinosteroid (BR).
View Article and Find Full Text PDFThe production of anthocyanin is regulated by light and corresponding photoreceptors. In this study, we found that exposure to blue light and overexpression of CRY1a are associated with increased accumulation of anthocyanin in tomato (Solanum lycopersicum L.).
View Article and Find Full Text PDFPlants generate reactive oxygen species (ROS) in the apoplast in response to pathogen attack, especially following resistance () gene-mediated pathogen recognition; however, the mechanisms activating ROS generation remain unknown. Here, we demonstrate that RKN () infection rapidly induces ROS accumulation in the roots of tomato () plants that contain the gene but rarely induces ROS accumulation in the susceptible or -silenced resistant genotypes. RNK also induces the hypersensitive response, a form of programmed cell death, in plants.
View Article and Find Full Text PDFBlue light photoreceptors, cryptochromes (CRYs), regulate multiple aspects of plant growth and development. However, our knowledge of CRYs is predominantly based on model plant Arabidopsis at early growth stage. In this study, we elucidated functions of CRY1a gene in mature tomato (Solanum lycopersicum) plants by using cry1a mutants and CRY1a-overexpressing lines (OE-CRY1a-1 and OE-CRY1a-2).
View Article and Find Full Text PDFBrassinosteroids (BRs) regulate plant development and stress response. Although much has been learned about their roles in plant development, the mechanisms by which BRs regulate plant stress tolerance remain unclear. Chilling is a major stress that adversely affects plant growth.
View Article and Find Full Text PDFEnvironmental pollution by organic pollutants (OPs) has become a global concern due to its detrimental effects on the environment and human health. As plants are used to remediate contaminated sites, understanding the responses of plants to various OPs and fortification of plant tolerance are of great significance. In this work, we studied the biochemical and molecular responses of cucumber plants to three well-known OPs, 2,4,6-trichlorophenol, chlorpyrifos and oxytetracycline in the absence or presence of 24-epibrassinolide (EBR), a potent regulator of plant growth and stress tolerance.
View Article and Find Full Text PDFInterplay of hormones with reactive oxygen species (ROS) fine-tunes the response of plants to stress; however, the crosstalk between brassinosteroids (BRs) and ROS in nematode resistance is unclear. In this study, we found that low BR biosynthesis or lack of BR receptor increased, whilst exogenous BR decreased the susceptibility of tomato plants to Meloidogyne incognita. Hormone quantification coupled with hormone mutant complementation experiments revealed that BR did not induce the defence response by triggering salicylic acid (SA), jasmonic acid/ethylene (JA/ET) or abscisic acid (ABA) signalling pathway.
View Article and Find Full Text PDFEthylene responsive factors (ERFs) act as critical downstream components of the ethylene signalling pathway in regulating plant development and stress responses. However little is known about its role in regulation of photosynthesis. Here, we identified an ethylene-inducible ERF gene in citrus, CitERF13.
View Article and Find Full Text PDFMelatonin regulates broad aspects of plant responses to various biotic and abiotic stresses, but the upstream regulation of melatonin biosynthesis by these stresses remains largely unknown. Herein, we demonstrate that transcription factor heat-shock factor A1a (HsfA1a) conferred cadmium (Cd) tolerance to tomato plants, in part through its positive role in inducing melatonin biosynthesis under Cd stress. Analysis of leaf phenotype, chlorophyll content, and photosynthetic efficiency revealed that silencing of the HsfA1a gene decreased Cd tolerance, whereas its overexpression enhanced plant tolerance to Cd.
View Article and Find Full Text PDFMelatonin is a pleiotropic signaling molecule that provides physiological protection against diverse environmental stresses in plants. Nonetheless, the mechanisms for melatonin-mediated thermotolerance remain largely unknown. Here, we report that endogenous melatonin levels increased with a rise in ambient temperature and that peaked at 40°C.
View Article and Find Full Text PDFGlutathione (GSH) plays a critical role in plant growth, development and responses to stress. However, the mechanism by which GSH regulates tolerance to cadmium (Cd) stress still remains unclear. Here we show that inhibition of GSH biosynthesis by buthionine sulfoximine (BSO) aggravated Cd toxicity by increasing accumulation of reactive oxygen species (ROS) and reducing contents of nitric oxide (NO) and S-nitrosothiol (SNO) in tomato roots.
View Article and Find Full Text PDFBoth selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants.
View Article and Find Full Text PDFAlthough phytohormones such as indole-3-acetic acid (IAA), cytokinin (CK) and strigolactone are important modulators of plant architecture, it remains unclear whether reactive oxygen species are involved in the regulation of phytohormone-dependent axillary bud outgrowth in plants. We used diverse techniques, including transcriptional suppression, HPLC-MS, biochemical methodologies and gene transcript analysis to investigate the signaling pathway for apoplastic hydrogen peroxide (H2 O2 )-induced axillary bud outgrowth. Silencing of tomato RESPIRATORY BURST OXIDASE HOMOLOG 1 (RBOH1) and WHITEFLY INDUCED 1 (WFI1), two important genes involved in H2 O2 production in the apoplast, enhanced bud outgrowth, decreased transcript of FZY - a rate-limiting gene in IAA biosynthesis and IAA accumulation in the apex - and increased the transcript of IPT2 involved in CK biosynthesis and CK accumulation in the stem node.
View Article and Find Full Text PDFNitric oxide (NO) and mitogen-activated protein kinase (MPK) play important roles in brassinosteroid (BR)-induced stress tolerance, however, their functions in BR-induced pesticides metabolism remain unclear. Here, we showed that MPK activity and transcripts of SlMPK1 and SlMPK2 were induced by chlorothalonil (CHT), a widely used fungicide, in tomato leaves. However, cosilencing of SlMPK1/2 compromised the 24-epibrassinolide (EBR)-induced upregulation of detoxification genes and CHT metabolism in tomato leaves.
View Article and Find Full Text PDFRoot-shoot communication plays a vital role in plant growth, development and adaptation to environmental stimuli. Grafting-induced stress tolerance is associated with the induction of plentiful stress-related genes and proteins; the mechanism involved, however, remains obscure. Here, we show that the enhanced tolerance against heat stress in cucumber plants with luffa as rootstock was accompanied with an increased accumulation of abscisic acid (ABA), down-regulation of a subset of microRNAs (miRNAs) but up-regulation of their target genes and CsHSP70 accumulation in the shoots.
View Article and Find Full Text PDFChlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv.
View Article and Find Full Text PDF2-Cys peroxiredoxins (2-CPs) function in the removal of hydrogen peroxide and lipid peroxides but their precise roles in the induction of autophagy have not been characterized. Here we show that heat stress, which is known to induce oxidative stress, leads to the simultaneous accumulation of transcripts encoding 2-CPs and autophagy proteins, as well as autophagosomes, in tomato (Solanum lycopersicum) plants. Virus-induced gene silencing of the tomato peroxiredoxin genes 2-CP1, 2-CP2, and 2-CP1/2 resulted in an increased sensitivity of tomato plants to heat stress.
View Article and Find Full Text PDF