Publications by authors named "Jing Lei Lei"

The efficiency of photon-to-electron conversion is extremely restricted by the electron-hole recombinant. Here, a new photoelectrochemical (PEC) sensing platform has been established based on the signal amplification of click chemistry (CC) via hybridization chain reaction (HCR) for highly sensitive microRNA (miRNA) assay. In this proposal, a preferred electron donor dopamine (DA) was first assembled with designed ligation probe (probe-N) via amidation reaction to achieve DA-coordinated signal probe (P-N).

View Article and Find Full Text PDF

Water-soluble nonconjugated polymer nanoparticles (PNPs) with strong fluorescence emission were prepared from hyperbranched poly(ethylenimine) (PEI) and d-glucose via Schiff base reaction and self-assembly in aqueous phase. Preparation of the PEI-d-glucose (PEI-G) PNPs was facile (one-pot reaction) and environmentally friendly under mild conditions. Also, PEI-G PNPs showed a high fluorescence quantum yield in aqueous solution, and the fluorescence properties (such as concentration- and solvent-dependent fluorescence) and origin of intrinsic fluorescence were investigated and discussed.

View Article and Find Full Text PDF

The use of the cosmetic ingredient cocamidopropylamine oxide (CAO) to inhibit the corrosion of steel in 0.5mol/LHCl is investigated. Electrochemical and weight loss methods were used to evaluate the inhibiting effect of CAO and the influences of inhibitor concentration and temperature were determined.

View Article and Find Full Text PDF

Inspired by dual-signaling ratiometric mechanism which could reduce the influence of the environmental change, a novel, convenient, and reliable method for the detection of mercury ions (Hg(2+)) based on Y-shaped DNA (Y-DNA) was developed. Firstly, the Y-DNA was formed via the simple annealing way of using two different redox probes simultaneously, omitting the multiple operation steps on the electrode. The Y-DNA was immobilized on the gold electrode surface and then an obvious ferrocene (Fc) signal and a weak methylene blue (MB) signal were observed.

View Article and Find Full Text PDF

Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe.

View Article and Find Full Text PDF

Multicolor polymer nanoparticles (or dots) were prepared via the reaction between hyperbranched polyethyleneimine (PEI) and aldehydes, and when the concentration of aldehydes was lower, the final mixture displayed gelation behavior. This phenomenon can be applied to visual detection of aldehydes. Moreover, the colors of the polymer dots and gel are varied by using different kinds of aldehydes, which can be utilized for visual discrimination of aldehydes.

View Article and Find Full Text PDF

A simple and effective biosensor for Hg(2+) determination was investigated. The novel biosensor was prepared by the insertion approach that the moiety-labeled DNA inserted into a loosely packed cyclic-dithiothreitol (DTT) monolayer, improving the hybridization efficiency. Electrochemical impedance spectroscopy studies of two biosensors (single-hairpin and dual-hairpin structure DNA modified electrodes) used for Hg(2+) detection indicated that the dual-hairpin modified electrode had a larger electron transfer resistance change (ΔRct).

View Article and Find Full Text PDF

A simple and effective method for the detection of electrochemically inactive sodium dodecyl sulfate (SDS) has been designed, based on different binding affinity of polyethyleneimine (PEI) toward electrochemically active eosin Y and electrochemically inactive SDS. The stronger binding affinity of the PEI toward SDS than eosin Y results in the decrease of the redox peak current of surface confined eosin Y and provides a quantitative readout for the SDS. The difference in value of the cathodic peak current showed a linear relationship with SDS concentration in a concentration range from 1 to 40 μg mL(-1), and a detection limit of 0.

View Article and Find Full Text PDF

A dual strategy that combines the adenosine triphosphate (ATP)-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection is employed to construct the biosensor. In this design, the methylene blue-labeled hairpin-structured DNA was self-assembled onto a gold electrode surface to prepare the modified electrode through the interaction of Au-S bond. In the procedure of ATP-dependent ligation reaction, when the specific cofactor ATP was added, the two split oligonucleotide fragments of 8-17 DNAzyme were linked by T4 DNA ligase and then released to hybridize with the labeled hairpin-structured DNA substrate.

View Article and Find Full Text PDF

Electrochemically induced Fenton (electro-Fenton) reaction was used for efficient and controllable preparation of hydroxyl radicals, leading to the generation of luminescent quantum dots through etching of as-exfoliated MoS2 nanosheets. Morphologic changes of MoS2 nanosheets during the electro-Fenton reaction were monitored using transmission electron microscopy, showing that etching of MoS2 nanosheets induced by hydroxyl radicals resulted in rapid homogeneous fracturing of the sheets into small dots via a transition of nanoporous morphology. The as-generated dots with vertical dimensional thickness of ca.

View Article and Find Full Text PDF