Untargeted lipidomics has been increasingly adopted for hypothesis generation in a biological context or discovery of disease biomarkers. Most of the current liquid chromatography mass spectrometry (LC-MS) based untargeted methodologies utilize a data dependent acquisition (DDA) approach in pooled samples for identification and MS-only acquisition for semi-quantification in individual samples. In this study, we present for the first time an untargeted lipidomic workflow that makes use of the newly implemented Quadrupole Resolved All-Ions (Q-RAI) acquisition function on the Agilent 6546 quadrupole time-of-flight (Q-TOF) mass spectrometer to acquire MS2 spectra in data independent acquisition (DIA) mode.
View Article and Find Full Text PDFOtotoxicity is a major adverse effect of platinum-based chemotherapeutics and currently, there remains a lack of United States Food and Drug Administration-approved therapies to prevent or treat this problem. In our study, we examined the role of the sphingosine 1-phosphate receptor 2 (S1P) in attenuating cisplatin-induced ototoxicity in several different animal models and cell lines. We found that ototoxicity in S1P knockout mice is dependent on reactive oxygen species (ROS) production and that S1P receptor activation with a specific agonist, CYM-5478, significantly attenuates cisplatin-induced defects, including hair cell degeneration in zebrafish and prolonged auditory brainstem response latency in rats.
View Article and Find Full Text PDFPlatinum-based therapeutics are used to manage many forms of cancer, but frequently result in peripheral neuropathy. Currently, the only option available to attenuate chemotherapy-induced neuropathy is to limit or discontinue this treatment. Sphingosine 1-phosphate (S1P) is a lipid-based signaling molecule involved in neuroinflammatory processes by interacting with its five cognate receptors: S1P In this study, using a combination of drug pharmacodynamic analysis in human study participants, disease modeling in rodents, and cell-based assays, we examined whether S1P signaling may represent a potential target in the treatment of chemotherapy-induced neuropathy.
View Article and Find Full Text PDF