Publications by authors named "Jing Han Hong"

Poly (ADP-ribose) Polymerase inhibitors (PARPi) have demonstrated remarkable clinical efficacy in treating ovarian cancer (OV) with BRCA1/2 mutations. However, drug resistance inevitably limits their clinical applications and there is an urgent need for improved therapeutic strategies to enhance the clinical utility of PARPi, such as Olaparib. Here, compelling evidence indicates that sensitivity of PARPi is associated with cell cycle dysfunction.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) is currently the standard of care for metastatic renal cell carcinoma (RCC), but treatment responses remain unpredictable. Aristolochic acid (AA), a prevalent supplement additive in Taiwan, has been associated with RCC and induces signature mutations, although its effect on the tumor-immune microenvironment (TIME) is unclear. We aimed to investigate the immune profile of AA-positive RCCs and explore its potential role as a susceptible candidate for ICB.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic and environmental factors that lead to peritoneal metastasis (PM) in gastric cancer (GC), which typically has a poor prognosis.
  • Researchers conducted a detailed analysis of samples from 326 patients, looking at various genetic and expression changes in tumors and their surroundings.
  • Findings revealed specific genetic mutations and tumor microenvironment characteristics that enhance the risk of PM, along with potential therapeutic targets to improve treatment strategies for patients with GC.
View Article and Find Full Text PDF

Collecting duct carcinoma (CDC) is an aggressive rare subtype of kidney cancer with unmet clinical needs. Little is known about its underlying molecular alterations and etiology, primarily due to its rarity, and lack of preclinical models. This study aims to comprehensively characterize molecular alterations in CDC and identify its therapeutic vulnerabilities.

View Article and Find Full Text PDF

XPO1 is an attractive and promising therapeutic target frequently overexpressed in multiple hematological malignancies. The clinical use of XPO1 inhibitors in natural killer/T-cell lymphoma (NKTL) is not well documented. Here, we demonstrated that XPO1 overexpression is an indicator of poor prognosis in patients with NKTL.

View Article and Find Full Text PDF

Background: Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease.

View Article and Find Full Text PDF

Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here, we show that ferroptosis negative regulation signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV.

View Article and Find Full Text PDF

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis.

View Article and Find Full Text PDF

Accessibility to standard of care remains a challenge to patients in low- and middle-income countries (LMIC), hampering efforts to alleviate the burden of cancer and to improve overall health outcomes. In response to this pressing global health care issue, we propose here a new strategy to create affordable, easily accessible, and effective therapeutic solutions to address this inequity in cancer treatment: the use of science-based biodiversity medicine as an alternative to modern drug therapy, in which we will leverage and combine high-throughput omics technologies with artificial intelligence, to study local biodiversity, their potential anticancer properties, and short- and long-term clinical response and outcomes.

View Article and Find Full Text PDF

Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.

View Article and Find Full Text PDF

Objectives: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA.

View Article and Find Full Text PDF

Acquired resistance to chemotherapy is one of the major causes of mortality in advanced nasopharyngeal carcinoma (NPC). However, effective strategies are limited and the underlying molecular mechanisms remain elusive. In this study, through transcriptomic profiling analysis of 23 tumor tissues, we found that NOTCH3 was aberrantly highly expressed in chemoresistance NPC patients, with NOTCH3 overexpression being positively associated with poor clinical outcome.

View Article and Find Full Text PDF

Natural killer/T-cell lymphoma (NKTL) is an uncommon malignancy with poor prognosis and limited therapeutic options. Activating mutations of signal transducer and activator of transcription 3 (STAT3) are frequently found in patients with NKTL, suggesting that targeted inhibition of STAT3 is a potential therapeutic option for this disease. Here, we have developed a small molecule drug WB737 as a novel and potent STAT3 inhibitor that directly binds to the STAT3-Src homology 2 domain with high affinity.

View Article and Find Full Text PDF

Background: Enhancer of zeste homolog 2 (EZH2), the key catalytic subunit of polycomb repressive complex 2 (PRC2), is overexpressed and plays an oncogenic role in various cancers through catalysis-dependent or catalysis-independent pathways. However, the related mechanisms contributing to ovarian cancer (OC) are not well understood.

Methods: The levels of EZH2 and H3K27me3 were evaluated in 105 OC patients by immunohistochemistry (IHC) staining, and these patients were stratified based on these levels.

View Article and Find Full Text PDF

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway.

View Article and Find Full Text PDF
Article Synopsis
  • - Natural killer/T-cell lymphoma (NKTL) is a rare and aggressive form of non-Hodgkin's lymphoma that has poor treatment options, leading to a need for new therapies like the HDAC inhibitor chidamide, which is currently approved for other types of T-cell lymphoma.
  • - A phase II clinical trial involving 28 NKTL patients showed that chidamide has promising efficacy, with a 39% overall response and an 18% complete response rate, but resistance was linked to overactive JAK-STAT signaling in cancer cells.
  • - Combining chidamide with a JAK inhibitor (ruxolitinib) can help overcome resistance, and the study identified CD30 (TNFRSF8) as a
View Article and Find Full Text PDF

Prevalent copy number alteration is the most prominent genetic characteristic associated with ovarian cancer (OV) development, but its role in immune evasion has not been fully elucidated. In this study, we identified RAD21, a key component of the cohesin complex, as a frequently amplified oncogene that could modulate immune response in OV. Through interrogating the RAD21-regulated transcriptional program, we found that RAD21 directly interacts with YAP/TEAD4 transcriptional corepressors and recruits the NuRD complex to suppress interferon (IFN) signaling.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) is one of the most characterized epigenetic modifiers, modulating chromatin structure and gene expression, which plays an important role in cell cycle, differentiation and apoptosis. Dysregulation of HDAC promotes cancer progression, thus inhibitors targeting HDACs have evidently shown therapeutic efficacy in multiple cancers. Tucidinostat (formerly known as chidamide), a novel subtype-selective HDAC inhibitor, inhibits Class I HDAC1, HDAC2, HDAC3, as well as Class IIb HDAC10.

View Article and Find Full Text PDF

Singapore's National Flower, Papilionanthe (Ple.) Miss Joaquim 'Agnes' (PMJ) is highly prized as a horticultural flower from the Orchidaceae family. A combination of short-read sequencing, single-molecule long-read sequencing and chromatin contact mapping was used to assemble the PMJ genome, spanning 2.

View Article and Find Full Text PDF

Malignant phyllodes tumors (PT) are rare aggressive fibroepithelial neoplasms with high metastatic potential and lack effective therapy. We established a patient-derived xenograft (PDX) and cell line model (designated MPT-S1) of malignant PT which demonstrated clinical response to pazopanib. Whole exome sequencing identified somatic mutations in TP53, RB1, MED12, and KMT2D.

View Article and Find Full Text PDF

Background: Aristolochic acids (AAs) are potent mutagens commonly found in herbal plant-based remedies widely used throughout Asian countries.

Patients And Methods: To understand whether AA is involved in the tumorigenesis of the oro-gastrointestinal tract, we used whole-exome sequencing to profile 54 cases of four distinct types of oro-gastrointestinal tract cancer (OGITC) from Taiwan.

Results: A diverse landscape of mutational signatures including those from DNA mismatch repair and reactive oxygen species was observed.

View Article and Find Full Text PDF

Clathrin-mediated vesicle trafficking (CMVT) is a fundamental process in all eukaryotic species, and indispensable to organism's growth and development. Recently, it has been suggested that CMVT also plays important roles in the regulation of plant immunity. However, the molecular link between CMVT and plant immunity is largely unknown.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) exhibits frequent inactivating mutations of the histone acetyltransferase CREBBP, highlighting the attractiveness of targeting CREBBP deficiency as a therapeutic strategy. In this study, we demonstrate that chidamide, a novel histone deacetylase (HDAC) inhibitor, is effective in treating a subgroup of relapsed/refractory DLBCL patients, achieving an overall response rate (ORR) of 25.0% and a complete response (CR) rate of 15.

View Article and Find Full Text PDF

Ovarian cancer is characterized by aberrant activation of the mitogen-activated protein kinase (MAPK), highlighting the importance of targeting the MAPK pathway as an attractive therapeutic strategy. However, the clinical efficacy of MEK inhibitors is limited by intrinsic or acquired drug resistance. Here, we established patient-derived ovarian cancer models resistant to MEK inhibitors and demonstrated that resistance to the clinically approved MEK inhibitor trametinib was associated with enhancer reprogramming.

View Article and Find Full Text PDF

Novel strategies to treat late-stage nasopharyngeal carcinoma that often develop resistance to chemotherapy remains an unmet clinical demand. In this study, we identify the multi-kinase inhibitor pacritinib as capable of resensitizing the response to paclitaxel in an acquired resistance model. Transcriptome analysis of paclitaxel-sensitive and -resistant cell lines, as well as chemorefractory clinical samples, identified as the top candidate gene suppressed by pacritinib and whose overexpression was significantly associated with paclitaxel resistance and poor clinical outcome.

View Article and Find Full Text PDF