Publications by authors named "Jiney Jose"

The emergence of drug-resistant strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is on the rise and increasing antimicrobial resistance is a global threat. This phenomenon necessitates new drug design methods such as a prodrug strategy to develop novel antitubercular agents.

View Article and Find Full Text PDF

Organelle selective fluorescent probes, especially those capable of concurrent detection of specific organelles, are of benefit to the research community in delineating the interplay between various organelles and the impact of such interaction in maintaining cellular homeostasis and its disruption in the diseased state. Although very useful, such probes are synthetically challenging to design due to the stringent lipophilicity requirement posed by different organelles, and hence, the lack of such probes being reported so far. This work details the synthesis, photophysical properties, and cellular imaging studies of two bora-diaza-indacene based fluorescent probes that can specifically and simultaneously visualise lipid droplets and endoplasmic reticulum; two organelles suggested having close interactions and implicated in stress-induced cellular dysfunction and disease progression.

View Article and Find Full Text PDF

Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery.

View Article and Find Full Text PDF

Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is an aggressive brain tumor with high mortality rates. Due to its invasiveness, heterogeneity, and incomplete resection, the treatment is very challenging. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have great potential for GBM treatment, however, their efficacy is primarily limited by poor brain distribution due to the presence of the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Whilst the role of the efflux transporters are well established in GBM, the expression and function of uptake transporters, such as the organic anion transporting polypeptide (OATP) family, are not well understood. OATPs possess broad substrate specificity that includes anti-cancer agents; therefore, we sought to investigate the expression of four OATP isoforms in human GBM cell types using patient tumor tissue.

View Article and Find Full Text PDF

The development of chemotherapies for glioblastoma is hindered by their limited bioavailability and toxicity on normal brain function. To overcome these limitations, we investigated the structure-dependent activity of heptamethine cyanine dyes (HMCD), a group of tumour-specific and BBB permeable near-infrared fluorescent dyes, in both commercial (U87MG) and patient-derived GBM cell lines. HMCD analogues with strongly ionisable sulphonic acid groups were not taken up by patient-derived GBM cells, but were taken up by the U87MG cell line.

View Article and Find Full Text PDF

New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function.

View Article and Find Full Text PDF

Perforin is a key effector of lymphocyte-mediated cell death pathways and contributes to transplant rejection of immunologically mismatched grafts. We have developed a novel series of benzenesulfonamide (BZS) inhibitors of perforin that can mitigate graft rejection during allogeneic bone marrow/stem cell transplantation. Eight such perforin inhibitors were tested for their murine pharmacokinetics, plasma protein binding, and their ability to block perforin-mediated lysis and to block the rejection of major histocompatibility complex (MHC)-mismatched mouse bone marrow cells.

View Article and Find Full Text PDF

The CDK4/6 inhibitor palbociclib, combined with endocrine therapy, has been shown to be effective in postmenopausal women with estrogen receptor-positive, HER2-negative advanced or metastatic breast cancer. However, palbociclib is not as effective in the highly aggressive, triple-negative breast cancer that lacks sensitivity to chemotherapy or endocrine therapy. We hypothesized that conjugation of the near-infrared dye MHI-148 with palbociclib can produce a potential theranostic in triple-negative, as well as estrogen receptor-positive, breast cancer cells.

View Article and Find Full Text PDF

Cytoprotective agents are mainly used to protect the gastrointestinal tract linings and in the treatment of gastric ulcers. These agents are devoid of appreciable cytotoxic or cytostatic effects, and medicinal chemistry efforts to modify them into anticancer agents are rare. A drug repurposing campaign initiated in our laboratory with the primary focus of discovering brain cancer drugs resulted in drug-dye conjugate 1, a combination of the cytoprotective agent troxipide and heptamethine cyanine dye MHI 148.

View Article and Find Full Text PDF

Effective cancer therapeutics for brain tumors must be able to cross the blood-brain barrier (BBB) to reach the tumor in adequate quantities and overcome the resistance conferred by the local tumor microenvironment. Clinically approved chemotherapeutic agents have been investigated for brain neoplasms, but despite their effectiveness in peripheral cancers, failed to show therapeutic success in brain tumors. This is largely due to their poor bioavailability and specificity towards brain tumors.

View Article and Find Full Text PDF

This review covers the application of heptamethine cyanine dye (HMCD) mediated drug delivery. A relatively small number of HMCDs possess tumor targeting abilities, and this has spurred interest from research groups to explore them as drug delivery systems. Their tumor selectivity is primarily attributed to their uptake by certain isoforms of organic anion transporting polypeptides (OATPs) which are overexpressed in cancer tissues, although there are other possible mechanisms for the observed selectivity still under investigation.

View Article and Find Full Text PDF

We describe the synthesis and in vitro activity of drug-dye conjugate 1, which is a combination of the PARP inhibitor rucaparib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed strong cytotoxic activity with nanomolar potency (EC: 128 nM), which was a 780 fold improvement over rucaparib itself. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug for treatment for glioblastoma even though these cell lines were resistant to TMZ treatment.

View Article and Find Full Text PDF

Perforin is a key effector protein in the vertebrate immune system and is secreted by cytotoxic T lymphocytes and natural killer cells to help eliminate virus-infected and transformed target cells. The ability to modulate perforin activity in vivo could be extremely useful, especially in the context of bone marrow stem cell transplantation where early rejection of immunologically mismatched grafts is driven by the recipient's natural killer cells, which overwhelmingly use perforin to kill their targets. Bone marrow stem cell transplantation is a potentially curative treatment for both malignant and nonmalignant disorders, but when the body recognizes the graft as foreign, it is rejected by this process, often with fatal consequences.

View Article and Find Full Text PDF

We describe the synthesis of drug-dye conjugate 1 between anaplastic lymphoma kinase inhibitor Crizotinib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed potent cytotoxic activity with nanomolar potency (EC: 50.9 nM).

View Article and Find Full Text PDF

This communication details the synthesis, evaluation of photophysical properties, and cellular imaging studies of cyanine chromophore based fluorescent dye 1 as a selective imaging agent for mitochondria.

View Article and Find Full Text PDF

Serotonin (5-hydroxytryptamine, 5-HT) is a critical local regulator of epithelial homeostasis in the breast and exerts its actions through a number of receptors. Dysregulation of serotonin signaling is reported to contribute to breast cancer pathophysiology by enhancing cell proliferation and promoting resistance to apoptosis. Preliminary analyses indicated that the potent 5-HT1B/1D serotonin receptor agonist 5-nonyloxytryptamine (5-NT), a triptan-like molecule, induced cell death in breast cancer cell lines.

View Article and Find Full Text PDF

The structure-activity relationships for a series of arylsulphonamide-based inhibitors of the pore-forming protein perforin have been explored. Perforin is a key component of the human immune response, however inappropriate activity has also been implicated in certain auto-immune and therapy-induced conditions such as allograft rejection and graft versus host disease. Since perforin is expressed exclusively by cells of the immune system, inhibition of this protein would be a highly selective strategy for the immunosuppressive treatment of these disorders.

View Article and Find Full Text PDF

The pore-forming protein perforin is a key component of mammalian cell-mediated immunity and essential to the pathway that allows elimination of virus-infected and transformed cells. Perforin activity has also been implicated in certain auto-immune conditions and therapy-induced conditions such as allograft rejection and graft versus host disease. An inhibitor of perforin activity could be used as a highly specific immunosuppressive treatment for these conditions, with reduced side-effects compared to currently accepted therapies.

View Article and Find Full Text PDF

Background: Ketamine is a rapidly acting dissociative anaesthetic drug with additional sympathomimetic, analgesic, and antidepressant properties. Despite these advantages, clinical use is curtailed by prolonged psychomimetic effects apparent over the entire dose spectrum. In this study, we report on the hypnotic potency of SN 35210, the first ketamine ester-analogue designed for rapid offset via esterase-mediated hydrolysis.

View Article and Find Full Text PDF

Background: Ketamine is a well-established, rapidly acting dissociative anesthetic. Clinical use is limited by prolonged psychotomimetic phenomena on emergence, often requiring the coadministration of additional hypnotic drugs. We hypothesized that the development of ketamine ester analogs with ultrashort offset times might markedly reduce the dysphoric emergence phenomena and, hence, increase the utility of a ketamine-like hypnotic and analgesic.

View Article and Find Full Text PDF

Five SOX peptides are used to classify the MAPK groups and isoforms thereof using chemometrics. The score plots show excellent classification and accuracy, while support vector machine analysis leads to the quantification of ERK and an ERK inhibitor concentration in kinase mixtures. Examination of the loading plots reveals cross-reactivity among the peptides, and some unexpected surprises.

View Article and Find Full Text PDF

eEF-2K is a potential target for treating cancer. However, potent specific inhibitors for this enzyme are lacking. Previously, we identified 2,6-diamino-4-(2-fluorophenyl)-4H-thiopyran-3,5-dicarbonitrile (DFTD) as an inhibitor of eEF-2K.

View Article and Find Full Text PDF

A series of aliphatic esters of the non-opioid anaesthetic/analgesic ketamine were prepared and their properties as shorter-acting analogues of ketamine itself were explored in an infused rat model, measuring the time after infusion to recover from both the anaesthetic (righting reflex) and analgesic (response to stimulus) effects. The potency of the esters as sedatives was not significantly related to chain length, but Me, Et and i-Pr esters were the more dose potent (up to twofold less than ketamine), whereas n-Pr esters were less potent (from 2- to 6-fold less than ketamine). For the Me, Et and i-Pr esters recovery from anaesthesia was 10-15-fold faster than from ketamine itself, and for the n-Pr esters it was 20-25-fold faster than from ketamine.

View Article and Find Full Text PDF