(R)-[3,5-Bis(trifluoromethyl)phenyl] ethanol is a key chiral intermediate for the synthesis of aprepitant. In this paper, an efficient synthetic process for (R)-[3,5- bis(trifluoromethyl)phenyl] ethanol was developed via the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone, catalyzed by Leifsonia xyli CCTCC M 2010241 cells using isopropanol as the co-substrate for cofactor recycling. Firstly, the substrate and product solubility and cell membrane permeability of biocatalysts were evaluated with different co-substrate additions into the reaction system, in which isopropanol manifested as the best hydrogen donor of coupled NADH regeneration during the bioreduction of 3,5-bis(trifluoromethyl) acetophenone.
View Article and Find Full Text PDFA novel bacterial strain HS0904 was isolated from a soil sample using 3,5-bis(trifluoromethyl) acetophenone as the sole carbon source. This bacterial isolate can asymmetrically reduce 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol with high enantiometric excess (ee) value. Based on its morphological, physiological characteristics, Biolog, 16S rDNA sequence and phylogenetic analysis, strain HS0904 was identified as Leifsonia xyli HS0904.
View Article and Find Full Text PDFCytochrome P450 (P450) is a ubiquitous family of enzymes responsible for the metabolism of a wide variety of drugs and their metabolites, including cocaine. To investigate the effects of cocaine on myocardial injuries and cardiac P450 expression, BALB/c mice were injected daily intraperitoneally with cocaine (30 mg/kg) or cocaine plus pretreatment of P450 inhibitors for 14 days. Tumor necrosis factor-alpha (TNF-alpha) content and creatine phosphokinase (CPK) activity in mice hearts and serums were significantly increased after long-term treatment with cocaine.
View Article and Find Full Text PDF