Publications by authors named "JinZhong Lin"

Type III CRISPR-Cas executes a multifaceted anti-phage response, activating effectors such as a nuclease or membrane depolarizer. In a recent Cell paper, Baca and Majumder et al. report an accessory effector, Cad1, which deaminates ATP into ITP, causing ITP accumulation and host growth arrest, thereby inhibiting phage propagation.

View Article and Find Full Text PDF

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency.

View Article and Find Full Text PDF

The lipid nanoparticle (LNP) has been so far proven as a strongly effective delivery system for mRNA and siRNA. However, the mechanisms of LNP's distribution, metabolism, and elimination are complicated, while the transportation and pharmacokinetics (PK) of LNP are just sparsely investigated and simply described. This study aimed to build a model for the transportation of RNA-LNP in Hela cells, rats, mice, and humans by physiologically based pharmacokinetic (PBPK) and quantum mechanics (QM) models with integrated multi-source data.

View Article and Find Full Text PDF
Article Synopsis
  • Translation termination involves proteins RF1, RF2, and RF3, with RF3 recycling the other two from the ribosome by exchanging GDP for GTP.
  • The research uses cryogenic-electron microscopy to illustrate how the 70S ribosome complex accelerates the release of GDP from RF3, highlighting its role as a guanine nucleotide exchange factor.
  • The study reveals that the ribosome remodels RF3, facilitating GTP binding and the release of RF1, showcasing a previously unrecognized function of the ribosome in regulating RF3's activity.
View Article and Find Full Text PDF

Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties.

View Article and Find Full Text PDF

The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state.

View Article and Find Full Text PDF

Aspirin, also named acetylsalicylate, can directly acetylate the side-chain of lysine in protein, which leads to the possibility of unexplained drug effects. Here, the study used isotopic-labeling aspirin-d with mass spectrometry analysis to discover that aspirin directly acetylates 10 HDACs proteins, including SIRT1, the most studied NAD-dependent deacetylase. SIRT1 is also acetylated by aspirin in vitro.

View Article and Find Full Text PDF

Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling.

View Article and Find Full Text PDF

Acidic residues (Asp and Glu) have a high prevalence on protein surfaces, but cross-linking reactions targeting these residues are limited. Existing methods either require high-concentration coupling reagents or have low structural compatibility. Here a previously reported "plant-and-cast" strategy is extended to develop heterobifunctional cross-linkers.

View Article and Find Full Text PDF

The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs.

View Article and Find Full Text PDF

Despite a wide presence of type III clustered regularly interspaced short palindromic repeats, CRISPR-associated (CRISPR-Cas) in archaea and bacteria, very few anti-CRISPR (Acr) proteins inhibiting type III immunity have been identified, and even less is known about their inhibition mechanism. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB2, encoded by Sulfolobus virus S. islandicus rod-shaped virus 3 (SIRV3).

View Article and Find Full Text PDF

Background: Heterologous vaccine schedules have been recommended to provide superior immunity and protection against emergent SARS-CoV-2 variants of concern. We aimed to evaluate the safety, immunogenicity, and efficacy of an mRNA COVID-19 vaccine RQ3013 compared with adenoviral vectored vaccine Ad5-nCoV and protein subunit vaccine ZF2001 as the fourth dose in adults primed with three doses of inactivated vaccines in China.

Methods: We conducted a double-blinded, randomised, controlled, phase 3b trial among healthy Chinese adults at Lancang County, Yunnan, China.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. Although it has been extensively studied in the past, no vaccine or other useful treatment against ASFV is available. The genome of ASFV encodes more than 170 proteins, but the structures and functions for the majority of the proteins remain elusive, which hindered our understanding on the life cycle of ASFV and the development of ASFV-specific inhibitors.

View Article and Find Full Text PDF

Autoproteolysis has been discovered to play key roles in various biological processes, but functional autoproteolysis has been rarely reported for transmembrane signaling in prokaryotes. In this study, an autoproteolytic effect was discovered in the conserved periplasmic domain of anti-σ factor RsgIs from , which was found to transmit extracellular polysaccharide-sensing signals into cells for regulation of the cellulosome system, a polysaccharide-degrading multienzyme complex. Crystal and NMR structures of periplasmic domains from three RsgIs demonstrated that they are different from all known proteins that undergo autoproteolysis.

View Article and Find Full Text PDF
Article Synopsis
  • Mass vaccination can prevent contagious diseases, but new SARS-CoV-2 variants are increasingly evading immunity from existing COVID-19 vaccines.
  • A new mRNA-based vaccine that targets specific regions of the SARS-CoV-2 proteome has shown potential in generating strong immune responses in tests with engineered mice and rhesus macaques.
  • Combining this novel vaccine with existing ones enhances protection against variants like Beta and Omicron, highlighting the need for vaccine designs that activate both antibody and T-cell responses.
View Article and Find Full Text PDF

Lipid nanoparticle (LNP)-coated-modified RNA(modRNA) has been developed for enhancing the stability of modRNA, but it tends to accumulate in liver. The current study aimed to optimize strategy for increasing cardiac expression efficiency of modRNA. We synthesized Luciferase (Luc)-modRNA, and also developed 122Luc modRNA, a liver silencing Luc modRNA.

View Article and Find Full Text PDF

Two types of glycyl-tRNA synthetase (GlyRS) are known, the α2 and the α2β2 GlyRSs. Both types of synthetase employ a class II catalytic domain to aminoacylate tRNAGly. In plastids and some bacteria, the α and β subunits are fused and are designated as (αβ)2 GlyRSs.

View Article and Find Full Text PDF

The human AAA+ ATPase CLPB (SKD3) is a protein disaggregase in the mitochondrial intermembrane space (IMS) and functions to promote the solubilization of various mitochondrial proteins. Loss-of-function CLPB mutations are associated with a few human diseases with neutropenia and neurological disorders. Unlike canonical AAA+ proteins, CLPB contains a unique ankyrin repeat domain (ANK) at its N-terminus.

View Article and Find Full Text PDF

In living cells, proteins often exert their functions by interacting with other proteins forming protein complexes. Obtaining homogeneous samples of protein complexes with correct fold and stoichiometry is critical for its biochemical and biophysical characterization as well as functional investigation. Here, we developed a Ribozyme-Assisted Polycistronic co-expression system (pRAP) for heterologous co-production and in vivo assembly of multi-subunit complexes.

View Article and Find Full Text PDF

is an important nosocomial pathogen. Upon colonizing a host, are subjected to selective pressure by immune defenses as they adapt to the host environment. However, the mechanism of this pathoadaptation is unknown.

View Article and Find Full Text PDF

In vitro transcription (IVT) using T7 RNA polymerase has become the most common method to synthesize RNAs for use in basic research and pharmaceutical applications. To solve the heterogeneity issue associated with the system, cis-acting ribozymes have been exploited to direct co-transcriptional processing to yield target RNAs with precisely defined ends. However, traditionally used ribozymes have many limitations, such as low efficiency and special sequence requirements of target RNAs.

View Article and Find Full Text PDF

The use of messenger RNA (mRNA) enables the transient production of therapeutic proteins with stable and predictable translational kinetics and without the risk of insertional mutagenesis. Recent findings highlight the enormous potential of mRNA-based therapeutics. Here, we describe the synthesis of chemically modified thrombopoietin (TPO) mRNA through transcription and delivery via lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

Type III CRISPR-Cas systems show the target (tg)RNA-activated indiscriminate DNA cleavage and synthesis of oligoadenylates (cOA) and a secondary signal that activates downstream nuclease effectors to exert indiscriminate RNA/DNA cleavage, and both activities are regulated in a spatiotemporal fashion. In III-B Cmr systems, cognate tgRNAs activate the two Cmr2-based activities, which are then inactivated via tgRNA cleavage by Cmr4, but how Cmr4 nuclease regulates the Cmr immunization remains to be experimentally characterized. Here, we conducted mutagenesis of Cmr4 conserved amino acids in , and this revealed that Cmr4α RNase-dead (dCmr4α) mutation yields cell dormancy/death.

View Article and Find Full Text PDF