Publications by authors named "JinPeng Shao"

Bladder tissue engineering holds promise for addressing bladder defects resulting from congenital or acquired bladder diseases. However, inadequate vascularization significantly impacts the survival and function of engineered tissues after transplantation. Herein, a novel bilayer silk fibroin (BSF) scaffold was fabricated with the capability of vascular endothelial growth factor (VEGF) and platelet derived growth factor-BB (PDGF-BB) sequential release.

View Article and Find Full Text PDF

Background: The impact of lower urinary tract symptoms (LUTS) on the quality of life of patients with benign prostatic hyperplasia (BPH) has been rarely reported. Additionally, the challenges faced by these patients in seeking medical care have often been overlooked. In order to explore the personal struggles caused by LUTS and the difficulties or barriers experienced by Chinese patients with BPH when seeking help, we conducted a qualitative interview study.

View Article and Find Full Text PDF

Predatory myxobacteria are important soil micropredators with the potential to regulate soil microbial community structure and ecosystem function. However, the biogeographic distribution patterns, assembly processes, and potential nutrient cycling functions of myxobacteria communities in typical agricultural soils in China are still poorly understood. High-throughput sequencing, phylogenetic zero modeling, and the multi-nutrient cycling index were used to assess the biogeographic distribution, assembly processes, and soil ecosystem functions of predation myxobacteria communities in typical agricultural soils of six long-term fertilization ecological experimental stations.

View Article and Find Full Text PDF

In recent years, there has been an increasing focus on the application of hydrogels in tissue engineering. The integration of 3D bioprinting technology has expanded the potential applications of hydrogels. However, few commercially available hydrogels used for 3D biological printing exhibit both excellent biocompatibility and mechanical properties.

View Article and Find Full Text PDF

The bladder is exposed to constant internal and external mechanical forces due to its deformation and the dynamic environment in which it is placed, which can hamper its repair after an injury. Traditional hydrogel materials have limitations regarding their use in the bladder owing to their poor mechanical and tissue adhesion properties. In this study, a composite hydrogel composed of methacrylate gelatine, methacrylated silk fibroin, and Pluronic F127 diacrylate was developed, which combines the characteristics of natural and synthetic polymers.

View Article and Find Full Text PDF