Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism.
View Article and Find Full Text PDFAcute myocardial infarction (AMI) is the most critical heart disease. Mesenchymal stem cells (MSCs) have been widely used as a therapy for AMI for several years. The human placenta has emerged as a valuable source of transplantable cells of mesenchymal origin that can be used for multiple cytotherapeutic purposes.
View Article and Find Full Text PDFIn the past decade, mesenchymal stem cells (MSCs) have been widely used for the treatment of osteoarthritis (OA), and exosomes may play a major role. Here, we acquired a special kind of MSCs from the bone marrow of surgically resected tissue from the hand of a patient with polydactyly. Experiments were focused on the role of polydactyly bone marrow-derived MSCs (pBMSCs) in osteoarthritis.
View Article and Find Full Text PDF