Publications by authors named "JinJoo Kim"

Trauma during pregnancy poses a potentially tragic risk to both the fetus and mother, making its management particularly challenging. Here, we present the case of a 35-year-old woman at 34 weeks and 2 days gestation who was in a motor vehicle accident and subsequently suffered placental abruption and underwent an emergency cesarean section. We also present a review of traumatic placental abruption and its epidemiology.

View Article and Find Full Text PDF

Central venous catheters are among the most used medical devices in hospitals today. Despite advances in modern medicine, catheter infections remain prevalent, causing significant morbidity and mortality worldwide. Here, SteriGel is reported, which is a multifunctional hydrogel engineered to prevent and treat central line-associated bloodstream infections (CLABSI).

View Article and Find Full Text PDF

Persistent or recurrent bleeding from microvessels inaccessible for direct endovascular intervention is a major problem in medicine today. Here, an innovative catheter-directed liquid embolic (P-LE) is bioengineered for rapid microvessel embolization to treat small vessel hemorrhage. Tested in rodent, porcine, and canine animal models under normal and coagulopathic conditions, P-LE outperformed clinically used embolic materials in both survival and non-survival experiments, effectively occluding vessels as small as 40 microns with no signs of recanalization.

View Article and Find Full Text PDF

Benign prostatic hyperplasia and prostate cancer are often associated with lower urinary tract symptoms, which can severely affect patient quality of life. To address this challenge, we developed and optimized an injectable compound, prostate ablation and drug delivery agent (PADA), for percutaneous prostate tissue ablation and concurrently delivered therapeutic agents. PADA is an ionic liquid composed of choline and geranic acid mixed with anticancer therapeutics and a contrast agent.

View Article and Find Full Text PDF

Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications.

View Article and Find Full Text PDF

Embolic materials currently in use for portal vein embolization (PVE) do not treat the tumor, which poses a risk for tumor progression during the interval between PVE and surgical resection. Here, is developed an ionic-liquid-based embolic material (LEAD) for portal vein embolization, liver ablation, and drug delivery. LEAD is optimized and characterized for diffusivity, X-ray visibility, and cytotoxicity.

View Article and Find Full Text PDF

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo self-assembly composed of azobenzene derivatives (Azo) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces -Azo-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly.

View Article and Find Full Text PDF

This study aimed to investigate the effects of C-peptide on C2C12 myotubes and a mouse model. Both in vitro and in vivo experiments were conducted to elucidate the role of C-peptide in muscle atrophy. Various concentrations (0, 0.

View Article and Find Full Text PDF

Three-dimensional (3D)tumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions.

View Article and Find Full Text PDF

Background: Ketamine and etomidate are commonly used as sedatives in rapid sequence intubation (RSI). However, there is no consensus on which agent should be favored when treating patients with trauma. This study aimed to compare the effects of ketamine and etomidate on first-pass success and outcomes of patients with trauma after RSI-facilitated emergency intubation.

View Article and Find Full Text PDF

Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment.

View Article and Find Full Text PDF

Dynamic manipulation of supramolecular self-assembled structures is achieved irreversibly or under non-physiological conditions, thereby limiting their biomedical, environmental, and catalysis applicability. In this study, microgels composed of azobenzene derivatives stacked via π-cation and π-π interactions are developed that are electrostatically stabilized with Arg-Gly-Asp (RGD)-bearing anionic polymers. Lateral swelling of RGD-bearing microgels occurs via cis-azobenzene formation mediated by near-infrared-light-upconverted ultraviolet light, which disrupts intermolecular interactions on the visible-light-absorbing upconversion-nanoparticle-coated materials.

View Article and Find Full Text PDF

Periostin is a matricellular protein that is ubiquitously expressed in normal human tissues and is involved in pathologic mechanism of chronic inflammatory and fibrotic disease. In this study we investigate periostin in the pathogenesis of Graves' orbitopathy (GO) using human orbital adipose tissue obtained from surgery and primary cultured orbital fibroblasts . POSTN (gene encoding periostin) expression in Graves' orbital tissues and healthy control tissues was studied, and the role of periostin in GO pathologic mechanism was examined through small-interfering RNA (siRNA)-mediated silencing.

View Article and Find Full Text PDF

Cancer-targeting ligands used for nanomedicines have been limited mostly to antibodies, peptides, aptamers, and small molecules thus far. Here, a library of glycocalyx-mimicking nanoparticles as a platform to enable screening and identification of cancer-targeting nanomedicines is reported. Specifically, a library of 31 artificial glycopolymers composed of either homogeneous or heterogeneous display of five different sugar moieties (β-glucose, β-galactose, α-mannose, β-N-acetyl glucosamine, and β-N-acetyl galactosamine) is converted to a library of glyconanoparticles (GlyNPs).

View Article and Find Full Text PDF

Pulmonary fibrosis is an irreparable and life-threatening disease with only limited therapeutic options. The recent outbreak of COVID-19 has caused a sharp rise in the incidence of pulmonary fibrosis owing to SARS-CoV-2 infection-mediated acute respiratory distress syndrome (ARDS). The considerable oxidative damage caused by locally infiltrated immune cells plays a crucial role in ARDS, suggesting the potential use of antioxidative therapeutics.

View Article and Find Full Text PDF

Activation of signal transducer and activator of transcription 3 (STAT3) under conditions of inflammation plays a crucial role in the pathogenesis of life-threatening pulmonary fibrosis (PF), initiating pro-fibrotic signaling following its phosphorylation. While there have been attempts to interfere with STAT3 activation and associated signaling as a strategy for ameliorating PF, potent inhibitors with minimal systemic toxicity have yet to be developed. Here, we assessed the in vitro and in vivo therapeutic effectiveness of a cell-permeable peptide inhibitor of STAT3 phosphorylation, designated APTstat3-9R, for ameliorating the indications of pulmonary fibrosis.

View Article and Find Full Text PDF

Background: The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been implicated in the pathogenesis of inflammatory diseases. We sought to investigate the role of PCSK9 in the pathogenesis of Graves' orbitopathy (GO) and whether it may be a legitimate target for treatment.

Methods: The was compared between GO (n=11) and normal subjects (n=7) in orbital tissue explants using quantitative real-time PCR, and in cultured interleukin-1β (IL-1β)-treated fibroblasts using western blot.

View Article and Find Full Text PDF

Psoriasis is a prevalent chronic inflammatory skin disease characterized by thickening of the epidermis accompanied by lesional erythema, scaling, and induration as a result of abnormal proliferation of keratinocytes. During the development of psoriasis, levels of intracellular reactive oxygen species (ROS) within psoriatic lesions are elevated, activating a pro-inflammatory signaling cascade. Here, we evaluated the therapeutic efficacy and mode of action of bilirubin nanoparticles (BRNPs), based on the potent, endogenous antioxidant bilirubin, in a preclinical psoriasis model.

View Article and Find Full Text PDF

Tubulin-based nanotubes (TNTs) to deliver microtubule-targeting agents (MTAs) for clinical oncology are reported. Three MTAs, docetaxel (DTX), laulimalide (LMD), and monomethyl auristatin E (MMAE), which attach to different binding sites in a tubulin, are loaded onto TNTs and cause structural changes in them, including shape anisotropy and tubulin layering. This drug-driven carrier transformation leads to changes in the drug-loading efficiency and stability characteristics of the carrier.

View Article and Find Full Text PDF

There have been many studies suggesting that probiotics are effective in patients with diarrhea-predominant irritable bowel syndrome (IBS-D). However, its mechanism of action as well as prediction of response is still to be elucidated. In the present study, to find out metabolomic characteristics of probiotic effect in IBS-D, we compared IBS symptom changes and metabolomic characteristics in the subjects' urine samples between multi-strain probiotics (one strain of sp.

View Article and Find Full Text PDF

We describe a small lipid nanoparticle (SLNP)-based nanovaccine platform and a new combination treatment regimen. Tumor antigen-displaying, CpG adjuvant-embedded SLNPs (OVA -SLNP@CpG) were prepared from biocompatible phospholipids and a cationic cholesterol derivative. The resulting nanovaccine showed highly potent antitumor efficacy in both prophylactic and therapeutic E.

View Article and Find Full Text PDF

Purpose: Inflammation, hyaluronan production, and adipogenesis are the main pathological events leading to Graves' orbitopathy (GO). Guggulsterone (GS), a phytosterol found in the resin of the guggul plant, is a well-known treatment for several inflammatory disorders, such as arthritis, obesity, and hyperlipidemia. Here we investigated the effects of GS treatment on GO pathology.

View Article and Find Full Text PDF

Despite the wide utility of gold nanorods (GNRs) in biomedical fields, only a few methods for modifying or coating the surface of GNRs suitable for biomedical applications are available. In this study, we report a new facile method that enables formation of an ultra-thin (nanometre-thickness) siloxane layer on GNRs with anti-biofouling properties and ligand functionalisation ability. A triblock random copolymer, poly(TMSMA--PEGMA--NAS), was used to coat GNRs.

View Article and Find Full Text PDF

Purpose: We examined the therapeutic effect of nontoxic concentrations of curcumin, a plant polyphenol extracted from Curcuma longae, in primary cultures of orbital fibroblasts from Graves' orbitopathy (GO).

Methods: The effect of curcumin on interleukin (IL)-1β induced-proinflammatory cytokine production was determined using quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis. Adipogenic differentiation was identified using Oil-Red O staining, and levels of peroxisome proliferator activator γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBP) α/β were determined by Western blot analyses.

View Article and Find Full Text PDF

Peptide-based therapeutics have suffered from a short plasma half-life. On the other hand, antibodies suffer from poor penetration into solid tumors owing to their large size. Herein, we present a new molecular form, namely a hybrid complex between a hapten-labeled bispecific peptide and an anti-hapten antibody ("HyPEP-body"), that may be able to overcome the aforementioned limitation.

View Article and Find Full Text PDF