Publications by authors named "Jin-hu Ma"

Non-alcoholic fatty liver disease (NAFLD) is associated with mutations in lipopolysaccharide-binding protein ( ), but the underlying epigenetic mechanisms remain understudied. Herein, rats with NAFLD were established and used to conduct integrative targeting-active enhancer histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon deficiency. Notably, reduced the inflammatory response but markedly aggravated high-fat diet (HFD)-induced NAFLD in rats, with pronounced alterations in the histone acetylome and regulatory transcriptome.

View Article and Find Full Text PDF

Esophageal cancer (EC) has a high incidence and mortality rate and is emerging as one of the most common health problems globally. Owing to the lack of sensitive detection methods, uncontrollable rapid metastasis, and pervasive treatment resistance, EC is often diagnosed in advanced stages and is susceptible to local recurrence. Exosomes are important components of intercellular communication and the exosome-mediated crosstalk between the cancer and surrounding cells within the tumor microenvironment plays a crucial role in the metastasis, progression, and therapeutic resistance of EC.

View Article and Find Full Text PDF

Using suspension cultures of cucumber (Cucumis sativus) cultivar Jinyou 35, we investigated the effects of allelochemical stresses induced by Eupatorium adenophorum extracts on root border cells (RBC), and the role of exogenous NO application in alleviation of the damage of root tips exposed to E. adenophorum extracts. The results showed that, 1000 mg·L E.

View Article and Find Full Text PDF

In this study, Xianyu 335, a maize hybrid, was used to investigate the effects of 24-Epibrassinolide (EBR, a synthetic BR) on antioxidant capacity and low-temperature response gene expression in maize embryo germination under low temperature (LT) stress. The germination rate of maize seeds under LT stress was not affected by EBR, but the seed activity index and seedling growth were improved. EBR increased the activities of some antioxidative enzymes including SOD, POD, CAT and GR, and the contents of non-enzymatic antioxidants, such as GSH and proline, and induced the accumulation of nitric oxide (NO).

View Article and Find Full Text PDF