NaTiO (NTO) has recently been reported for lithium ion storage and showed very promising results. In this work, we report substantially enhanced rate capability in NTO nanowires by Ti(iii) self-doping and carbon-coating. Ti(iii) doping and carbon coating were found to work in synergy to increase the electrochemical performances of the material.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
A concentration-gradient Ni-rich LiNi0.76Co0.1Mn0.
View Article and Find Full Text PDFNanobean SnO2-embedded TiO2 hollow submicrospheres are presented as a scattering layer for the first time in dye-sensitized solar cells. This designed mesoporous submicrostructure simultaneously promotes dye adsorption, light harvesting, and electron transport, leading to 28% improvement in the conversion efficiency compared to film-based SnO2.
View Article and Find Full Text PDFWell-ordered, one-dimensional H2Ti2O5, H2Ti8O17, TiO2-B, and anatase TiO2/TiO2-B nanowire arrays were innovatively designed and directly grown on current collectors as high performance three dimensional (3D) anodes for binder and carbon free lithium ion batteries (LIBs). The prepared thin nanowires exhibited a single crystalline phase with highly uniform morphologies, diameters ranging from 70-80 nm, and lengths of around 15 μm. Specifically, reversible Li insertion and extraction reactions around 1.
View Article and Find Full Text PDFThe unique TiO2-C/MnO2 core-double-shell nanowires are synthesized for the first time using as anode materials for lithium ion batteries (LIBs). They combine both advantages from TiO2 such as excellent cycle stability and MnO2 with high capacity (1230 mA h g(-1)). The additional C interlayer intends to improve the electrical conductivity.
View Article and Find Full Text PDFLow-cost transparent counter electrodes (CEs) for efficient dye-sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)-supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic-liquid-assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density-voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements.
View Article and Find Full Text PDFAn in situ electrodeposition method is described to fabricate the CdS or/and CdSe quantum dot (QD) sensitized hierarchical TiO(2) sphere (HTS) electrodes for solar cell application. Intensity modulated photocurrent spectroscopy (IMPS), intensity modulated photovoltage spectroscopy (IMVS) and electrochemical impedance spectroscopy (EIS) measurements are performed to investigate the electron transport and recombination of quantum dot-sensitized solar cells (QDSSCs) based on HTS/CdS, HTS/CdSe, and HTS/CdS/CdSe photoelectrodes. This dynamic study reveals that the CdSe/CdS cosensitized solar cell performs ultrafast electron transport and high electron collection efficiency (98%).
View Article and Find Full Text PDFA novel efficient metal free sensitizer containing asymmetric double donor-π-acceptor chains (DC) was synthesized for dye-sensitized solar cells (DSSCs). Comparing to 3.80%, 4.
View Article and Find Full Text PDFOne-dimensional and quasi-one-dimensional semiconductor nanostructures are desirable for dye-sensitized solar cells (DSSCs), since they can provide direct pathways for the rapid collection of photogenerated electrons, which could improve the photovoltaic performance of the device. Quasi-1D single-crystalline anatase TiO(2) nanostructures have been successfully prepared on transparent, conductive fluorine-doped tin oxide (FTO) glass with a growth direction of [101] through a facile hydrothermal approach. The influences of the initial titanium n-butoxide (TBT) concentration, hydrothermal reaction temperature, and time on the length of quasi-1D anatase TiO(2) nanostructures and on the photovoltaic performance of DSSCs have been investigated in detail.
View Article and Find Full Text PDF