Publications by authors named "Jin-Yeon Hong"

Nitrogen-doped mesoporous TiO2 (NMP TiO2) nanoparticles are synthesized using a soft triblock copolymer template by TiCl4 hydrolysis with ammonia water and applied to the photoelectrodes of dye-sensitized solar cells (DSSCs). The large surface area of a TiO2 mesoporous structure is favorable for dye uptake, and nitrogen doping of TiO2 is expected to increase the charge transport in the photoelectrode as well as the scattering of visible light. Structural characterizations for NMP TiO2 nanoparticles by XRD, XPS, BET, and BJH analyses revealed successful synthesis.

View Article and Find Full Text PDF

In pursuit of superior TiO2 photoanode materials for dye-sensitized solar cells (DSSCs), we prepared lotus-root shaped meso-/macroporous TiO2. The lotus-root shaped meso-/macroporous TiO2 was easily prepared by using a cetyltrimethylammonium hydroxide (CTAOH) template in aqueous solution. The crystallization of the as-prepared amorphous lotus-root shaped TiO2 was performed at 700 °C in air.

View Article and Find Full Text PDF

Chemically functionalizable shape-controlled poly(3,4-ethylenedioxythiophene) (PEDOT)-derived conducting copolymers, C1(C4)-CT/PEDOT/PSS-20APS and C1(C4)-CT/PEDOT/PSS-10APS, were prepared through oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) and 3-thiophenecarboxylic acid (C1-CT) or 4-(3-thienyl)butyric acid (C4-CT) in the presence of acid-labile mesoporous ZnO/Zn(OH)2 hard template. The mesoporous ZnO/Zn(OH)2 hard template could be removed by mild acid etching. The morphology of these polymeric microparticles was dependent on the concentration of ammonium persulfate (APS, (NH4)2S2O8) catalyst and the type of CT monomers.

View Article and Find Full Text PDF

Uniform submicron-scale Au spheres with an average dimension of 574 nm were facilely prepared from the redox reaction between HAuCl4 and 3,4-ethylenedioxythiophene (EDOT) in aqueous solution under ambient conditions. HAuCl4 precursor readily polymerized to poly(3,4-ethylenedioxythiophene) (PEDOT) and metallic Au spheres simultaneously formed within a short period of time. The Au spheres are consisted of two slightly different types of spherical particles based on their surface textures.

View Article and Find Full Text PDF

Rosette-like nanoscale Au materials were simply prepared through one-pot reduction of the AuCl₄⁻ precursor by 2-thiopheneacetic acid (2-TAA) without extra surface capping ligands at room temperature. 2-TAA underwent polymerization into polythiophene derivatives while the AuCl₄⁻ precursor was simultaneously reduced into various Au nanostructures. In situ generated polythiophene derivatives played a significant role of surface passivation in guiding the shape of Au nanostructures.

View Article and Find Full Text PDF

A new class of narrowly dispersed nanosize hexagonal MOF rods from Mn(III)-porphyrin and In(III) was obtained. The length of MOF rods was controlled by simple change of reaction times. Furthermore, the oxidation of styrene has been successfully demonstrated with Mn(III)-porphyrin MOF rods and their reusability has been also tested.

View Article and Find Full Text PDF

To simply reduce HAuCl(4) using 2-thiophenemethanol in an aqueous solution at room temperature, a novel metallic Au nanostructure with a high SERS activity was obtained. Flat sheet-like Au nanoleaves possessing many nanogap hotspots bound with a large percentage of high-index facets were obtained.

View Article and Find Full Text PDF