Publications by authors named "Jin-Yan Huang"

Multi-wavelength emission fluorescent manganese-nitrogen co-doped carbon dots (Mn, N co-doped CDs) were synthesized by solvothermal method using β-cyclodextrin, O-phenylenediamine, and manganese chloride as raw materials. The prepared Mn, N co-doped CDs were used as fluorescent nanosensing platforms for the detection of metal ions and biomolecules and were found to be capable of fluorescence detection of tannic acid (TA) and hafnium (Hf) ion at 320, 380, and 480 nm excitation wavelengths with multi-response linear ranges of 0.7 ~ 1.

View Article and Find Full Text PDF

Kernel size and plant architecture play important roles in kernel yield in rice. Cloning and functional study of genes related to kernel size and plant architecture are of great significance for breeding high-yield rice. Using the single-segment substitution lines which developed with as a donor parent and an elite cultivar Huajingxian74 (HJX74) as a recipient parent, we identified a novel QTL (quantitative trait locus), named , which controls kernel size and plant architecture.

View Article and Find Full Text PDF

Objective: This study aimed to examine the effects of mindfulness-based stress reduction (MBSR) in patients with acute myocardial infarction (AMI) after primary percutaneous coronary intervention (PPCI).

Methods: A retrospective study was conducted with data collected from AMI patients who underwent successful PPCI. The study included 61 cases that received 8-week MBSR intervention (MBSR group) and 61 cases that received weekly health education (control group) over the same period.

View Article and Find Full Text PDF

Protein-Protein binding affinity reflects the binding strength between the binding partners. The prediction of protein-protein binding affinity is important for elucidating protein functions and also for designing protein-based therapeutics. The geometric characteristics such as area (both interface and surface areas) in the structure of a protein-protein complex play an important role in determining protein-protein interactions and their binding affinity.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with retinoic acid receptor γ (RARG) rearrangement has clinical, morphologic, and immunophenotypic features similar to classic acute promyelocytic leukemia. However, AML with RARG rearrangement is insensitive to alltrans retinoic acid (ATRA) and arsenic trioxide (ATO) and carries a poor prognosis. We initiated a global cooperative study to define the clinicopathological features, genomic and transcriptomic landscape, and outcomes of AML with RARG rearrangements collected from 29 study groups/institutions worldwide.

View Article and Find Full Text PDF

Mixed phenotype acute leukemia (MPAL) is a subtype of leukemia in which lymphoid and myeloid markers are co-expressed. Knowledge regarding the genetic features of MPAL is lacking due to its rarity and heterogeneity. Here, we applied an integrated genomic and transcriptomic approach to explore the molecular characteristics of 176 adult patients with MPAL, including 86 patients with T-lymphoid/myeloid MPAL (T/My MPAL-NOS), 42 with Ph+ MPAL, 36 with B-lymphoid/myeloid MPAL (B/My MPAL-NOS), 4 with t(v;11q23), and 8 with MPAL, NOS, rare types.

View Article and Find Full Text PDF

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1–G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish.

View Article and Find Full Text PDF

Background: Metabolic reprogramming plays an essential role on lymphoma progression. Dysregulation of glutamine metabolism is implicated in natural-killer T-cell lymphoma (NKTCL) and tumor cell response to asparaginase-based anti-metabolic treatment.

Methods: To understand the metabolomic alterations and determine the potential therapeutic target of asparaginase, we assessed metabolomic profile using liquid chromatography-mass spectrometry in serum samples of 36 NKTCL patients, and integrated targeted metabolic analysis and RNA sequencing in tumor samples of 102 NKTCL patients.

View Article and Find Full Text PDF

GATA2, a key transcription factor in hematopoiesis, is frequently mutated in hematopoietic malignancies. How the GATA2 mutants contribute to hematopoiesis and malignant transformation remains largely unexplored. Here, we report that Gata2-L359V mutation impeded hematopoietic differentiation in murine embryonic and adult hematopoiesis and blocked murine chronic myeloid leukemia (CML) cell differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that changes in certain genes related to controlling DNA and proteins affect the growth of a type of cancer called diffuse large B-cell lymphoma (DLBCL).
  • They studied 619 patients and found that some gene mutations were linked to worse outcomes in patients.
  • The study showed that specific mutations can cause the cancer to grow faster by changing how cells in the tumor environment operate.
View Article and Find Full Text PDF

Background: The relationship between IL-35 genes polymorphism and susceptibility to coronary heart disease has not been tested in the largest Han population in China. The aim of this study was to explore the effect of single nucleotide polymorphisms (SNPs) of interleukin-35 (IL-35) genes and its relationship with environment on the risk of coronary heart disease (CHD).

Methods: We performed Hardy-Weinberg equilibrium test on the control group.

View Article and Find Full Text PDF
Article Synopsis
  • Diffuse large B-cell lymphoma (DLBCL) is a severe cancer type where multiple extranodal involvements (ENI) lead to worse outcomes; this study investigates how genetic mutations and alterations in the tumor environment affect ENI.
  • The analysis involved 1960 patients, with DNA and RNA sequencing on a subset, revealing that multiple ENI linked to poor health status, advanced cancer stages, and high levels of certain enzymes, indicating a negative prognosis.
  • Key findings include frequent MYD88 mutations in patients with ENI, associated with various other mutations and greater activity of regulatory T-cells, which can worsen the cancer's progression and invasiveness into critical body areas like bones and organs.
View Article and Find Full Text PDF
Article Synopsis
  • The text talks about a specific type of blood cancer called t(8;21) acute myelogenous leukemia (AML), which has different types of leukemia cells that develop at various stages.
  • Researchers used special techniques to find three groups of these leukemia cells, which either resisted treatment or were affected by it.
  • They discovered that patients with more of one specific type of cell (CD34CD117) had worse outcomes, suggesting that understanding these different cell types can help with future treatments.
View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzing 128 biopsy samples identified three distinct subtypes of NKTCL, each with unique characteristics, including cell origin and how they respond to treatments.
  • * The results highlight the molecular mechanisms of EBV-related NKTCL and could lead to improved clinical treatment strategies for patients.
View Article and Find Full Text PDF

Chromosomal translocations and generating fusion genes are closely associated with disease initiation and progression in acute myeloid leukemia (AML). In this study, we identified a novel t(X;17)(q28;q21) chromosomal rearrangement in a patient with acute monocytic leukemia. Using RNA-sequencing, we identified a KANSL1-MTCP1 and a KANSL1-CMC4 fusion gene.

View Article and Find Full Text PDF

Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization.

View Article and Find Full Text PDF

DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a highly conserved kinase whose hyperactivation is critically involved in a variety of human tumors. The role of DEPTOR playing in pituitary adenoma (PA) is largely unknown. Here, we reported that DEPTOR was downregulated in PA tissues, especially dopamine-resistant prolactinomas.

View Article and Find Full Text PDF

Homoharringtonine (HHT), a known protein synthesis inhibitor, has an anti-myeloid leukemia effect and potentiates the therapeutic efficacy of anthracycline/cytarabine induction regimens for acute myelogenous leukemia (AML) with favorable and intermediate prognoses, especially in the t(8;21) subtype. Here we provide evidence showing that HHT inhibits the activity of leukemia-initiating cells (Lin/Sca-1/c-kit; LICs) in a t(8;21) murine leukemia model and exerts a down-regulating effect on MYC pathway genes in human t(8;21) leukemia cells (Kasumi-1). We discovered that NF-κB repressing factor (NKRF) is bound directly by HHT via the second double-strand RNA-binding motif (DSRM2) domain, which is the nuclear localization signal of NKRF.

View Article and Find Full Text PDF
Article Synopsis
  • * Two E proteins, HEB and E2A, enhance leukemogenesis by interacting with AML1-ETO, while the third E protein, E2-2, is suppressed in these leukemia cells and acts as a negative regulator of tumor growth.
  • * E2-2's ability to inhibit AML1-ETO-driven cell growth and target specific genes offers insights into AML mechanisms and could help in developing new diagnostic and treatment options for affected patients.
View Article and Find Full Text PDF

Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified.

View Article and Find Full Text PDF

Aberrant expression of long noncoding RNA H19 has been associated with tumour progression, but the underlying molecular tumourigenesis mechanisms remain largely unknown. Here, we report that H19 expression is frequently downregulated in human primary pituitary adenomas and is negatively correlated with tumour progression. Consistently, upregulation of H19 expression inhibits pituitary tumour cell proliferation in vitro and tumour growth in vivo.

View Article and Find Full Text PDF

Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is a clonal malignancy of immature T cells. Recently, the next-generation sequencing approach has allowed systematic identification of molecular features in pediatric T-ALL. Here, by performing RNA-sequencing and other genomewide analysis, we investigated the genomic landscape in 61 adult and 69 pediatric T-ALL cases.

View Article and Find Full Text PDF

Background: Cytogenetic aberrations and gene mutations have long been regarded as independent prognostic markers in AML, both of which can lead to misexpression of some key genes related to hematopoiesis. It is believed that the expression level of the key genes is associated with the treatment outcome of AML.

Methods: In this study, we analyzed the clinical features and molecular aberrations of 560 newly diagnosed non-M3 AML patients, including mutational status of CEBPA, NPM1, FLT3, C-KIT, NRAS, WT1, DNMT3A, MLL-PTD and IDH1/2, as well as expression levels of MECOM, ERG, GATA2, WT1, BAALC, MEIS1 and SPI1.

View Article and Find Full Text PDF

is frequently mutated in acute myeloid leukemia (AML). To explore the features of human AML with the hotspot R882H mutation, we generated Dnmt3a R878H conditional knockin mice, which developed AML with enlarged LinSca1cKit cell compartments. The transcriptome and DNA methylation profiling of bulk leukemic cells and the single-cell RNA sequencing of leukemic stem/progenitor cells revealed significant changes in gene expression and epigenetic regulatory patterns that cause differentiation arrest and growth advantage.

View Article and Find Full Text PDF