Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation.
View Article and Find Full Text PDFAutophagy is a degradative pathway that plays an important role in maintaining cellular homeostasis. Dysfunction of autophagy is associated with the progression of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although one of the typical features of brain aging is an accumulation of redox-active metals that eventually lead to neurodegeneration, a plausible link between trace metal-induced neurodegeneration and dysregulated autophagy has not been clearly determined.
View Article and Find Full Text PDFThe dosage-dependent recruitment of RNA polymerase II (Pol II) at the promoters of genes related to neurodevelopment and stem cell maintenance is required for transcription by the fine-tuned expression of SET-domain-containing protein 5 (SETD5). Pol II O-GlcNAcylation by O-GlcNAc transferase (OGT) is critical for preinitiation complex formation and transcription cycling. SETD5 dysregulation has been linked to stem cell-like properties in some cancer types; however, the role of SETD5 in cancer cell stemness has not yet been determined.
View Article and Find Full Text PDFThe colonic mucosal barrier protects against infection, inflammation, and tissue ulceration. Composed primarily of Mucin-2, proteolytic erosion of this barrier is an invariant feature of colitis; however, the molecular mechanisms are not well understood. We have applied a recurrent food poisoning model of acquired inflammatory bowel disease using Typhimurium to investigate mucosal barrier erosion.
View Article and Find Full Text PDFNecroptosis is a type of cell death with excessive inflammation and organ damage in various human diseases. Although abnormal necroptosis is common in patients with neurodegenerative, cardiovascular, and infectious diseases, the mechanisms by which -GlcNAcylation contributes to the regulation of necroptotic cell death are poorly understood. In this study, we reveal that -GlcNAcylation of RIPK1 (receptor-interacting protein kinase1) was decreased in erythrocytes of the mouse injected with lipopolysaccharide, resulting in the acceleration of erythrocyte necroptosis through increased formation of RIPK1-RIPK3 complex.
View Article and Find Full Text PDFAims: Steatosis reducing effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in non-alcoholic steatohepatitis (NASH) has been consistently reported in humans, but their mechanism remains uncertain. In this study, we examined the expression of SGLT2 in human livers and investigated the crosstalk between SGLT2 inhibition and hepatic glucose uptake, intracellular O-GlcNAcylation, and autophagic regulation in NASH.
Materials And Methods: Human liver samples obtained from subjects with/without NASH were analyzed.
p21WAF1/Cip1 acts as a key negative regulator of cell cycle progression, which can form complexes with cyclin-dependent kinases together with specific cyclins to induce cell cycle arrest at specific stages. p21 protein levels have been shown to be regulated primarily through phosphorylation and ubiquitination during various stages of the cell cycle. Although phosphorylation and ubiquitin-dependent proteasomal degradation of p21 have been well established, other post-translational modifications that contribute to regulation of p21 stability and function remain to be further elucidated.
View Article and Find Full Text PDFNephrin is a type-1 transmembrane protein and a component of the slit diaphragm renal-filtration barrier. It has several functions in actin remodeling and cell-cell adhesion. Nephrin is principally located in the kidney glomerulus, but several studies have reported that nephrin is found in the pancreas, brain, and placenta.
View Article and Find Full Text PDFThe balance between cellular proliferation and apoptosis and the regulation of cell differentiation must be established to maintain tissue homeostasis. These cellular responses involve the kinase cascade-mediated Hippo pathway as a crucial regulator. Hence, Hippo pathway dysregulation is implicated in diverse diseases, including cancer.
View Article and Find Full Text PDFUnlabelled: A ketogenic diet (KD) is known to have beneficial health effects. Various types of KD interventions have been applied to manage metabolic syndrome based on modification of diet parameters such as duration of intervention, macronutrient components, and total calories. Nevertheless, the beneficial health impact of isocaloric KD is largely unknown, especially in healthy subjects.
View Article and Find Full Text PDFp53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis.
View Article and Find Full Text PDFIntestinal inflammation is the underlying basis of colitis and the inflammatory bowel diseases. These syndromes originate from genetic and environmental factors that remain to be fully identified. Infections are possible disease triggers, including recurrent human food-poisoning by the common foodborne pathogen Typhimurium (), which in laboratory mice causes progressive intestinal inflammation leading to an enduring colitis.
View Article and Find Full Text PDFPost-translational modifications, including -GlcNAcylation, play fundamental roles in modulating cellular events, including transcription, signal transduction, and immune signaling. Several molecular targets of -GlcNAcylation associated with pathogen-induced innate immune responses have been identified; however, the direct regulatory mechanisms linking -GlcNAcylation with antiviral RIG-I-like receptor signaling are not fully understood. In this study, we found that cellular levels of -GlcNAcylation decline in response to infection with Sendai virus.
View Article and Find Full Text PDFO-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification which occurs on the hydroxyl group of serine or threonine residues of nucleocytoplasmic proteins. It has been reported that the presence of this single sugar motif regulates various biological events by altering the fate of target proteins, such as their function, localization, and degradation. This study identified SMAD4 as a novel O-GlcNAc-modified protein.
View Article and Find Full Text PDFO-GlcNAc transferase (OGT) is an enzyme that catalyzes the O-GlcNAc modification of nucleocytoplasmic proteins and is highly expressed in many types of cancer. However, the mechanism regulating its expression in cancer cells is not well understood. This study shows that OGT is a substrate of the E3 ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) which plays an important role in cancer pathogenesis.
View Article and Find Full Text PDFHerein we describe a method for inducing cancer cell death, which relies on the use of a H2O2-responsive glycan metabolic precursor in conjunction with antibody-dependent cellular cytotoxicity (ADCC) or photodynamic therapy (PDT).
View Article and Find Full Text PDFControlled cell growth and proliferation are essential for tissue homeostasis and development. Wnt and Hippo signaling are well known as positive and negative regulators of cell proliferation, respectively. The regulation of Hippo signaling by the Wnt pathway has been shown, but how and which components of Wnt signaling are involved in the activation of Hippo signaling during nutrient starvation are unknown.
View Article and Find Full Text PDFUnlike other types of glycosylation, O-GlcNAcylation is a single glycosylation which occurs exclusively in the nucleus and cytosol. O-GlcNAcylation underlie metabolic diseases, including diabetes and obesity. Furthermore, O-GlcNAcylation affects different oncogenic processes such as osteoblast differentiation, adipogenesis and hematopoiesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
The Hippo pathway controls organ size and tissue homeostasis by regulating cell proliferation and apoptosis. The LATS-mediated negative feedback loop prevents excessive activation of the effectors YAP/TAZ, maintaining homeostasis of the Hippo pathway. YAP and TAZ are hyperactivated in various cancer cells which lead to tumor growth.
View Article and Find Full Text PDFSodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events in humans with type 2 diabetes (T2D); however, the underlying mechanism remains unclear. Activation of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome and subsequent interleukin (IL)-1β release induces atherosclerosis and heart failure. Here we show the effect of SGLT2 inhibitor empagliflozin on NLRP3 inflammasome activity.
View Article and Find Full Text PDFMass spectrometry-based spectral count has been a common choice of label-free proteome quantification due to the simplicity for the sample preparation and data generation. The discriminatory nature of spectral count in the MS data-dependent acquisition, however, inherently introduces the spectral count variation for low-abundance proteins in multiplicative LC-MS/MS analysis, which hampers sensitive proteome quantification. As many low-abundance proteins play important roles in cellular processes, deducing low-abundance proteins in a quantitatively reliable manner greatly expands the depth of biological insights.
View Article and Find Full Text PDFParkinson's disease (PD) is a chronic neurodegenerative disease with no cure. Calbindin, a Ca-buffering protein, has been suggested to have a neuroprotective effect in the brain tissues of PD patients and in experimental models of PD. However, the underlying mechanisms remain elusive.
View Article and Find Full Text PDF