Publications by authors named "Jin-Tong Yang"

Background: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs.

View Article and Find Full Text PDF

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice.

View Article and Find Full Text PDF
Article Synopsis
  • - Necroptosis, a form of programmed cell death, primarily affects alveolar epithelial cells during acute lung injury (ALI), and the study identifies new underlying mechanisms behind this process.
  • - Accumulation of mitochondrial citrate in AECs, caused by downregulation of specific proteins (Idh3α and Slc25a1), leads to necroptosis; inhibiting these proteins results in higher citrate levels and worsened lung injury in mice.
  • - The study reveals that citrate accumulation triggers mitochondrial fission and excessive mitophagy, interacting with a protein called FUNDC1, which ultimately promotes necroptosis; targeting citrate could be a novel strategy for protecting against ALI.
View Article and Find Full Text PDF

Our previous study showed that triggering receptors expressed on myeloid cell-1 (TREM-1) was upregulated in bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model. However, the role of TREM-1 in the development of PF and its underlying mechanism remain unclear. Herein, we report that the prophylactical blockade of TREM-1 using a decoy peptide dodecapeptide (LR12) exerted protective effects against BLM-induced PF in mice, with a higher survival rate, attenuated tissue injury, and less extracellular matrix deposition.

View Article and Find Full Text PDF

Background: Epoxyeicosatrienoic acids (EETs), the metabolite of arachidonic acid by cytochrome P450 (CYP), reportedly serve as a vital endogenous protective factor in several chronic diseases. EETs are metabolized by soluble epoxide hydrolase (sEH). We have observed that prophylactic blocking sEH alleviates bleomycin- (BLM-) induced pulmonary fibrosis (PF) in mice.

View Article and Find Full Text PDF

Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function.

View Article and Find Full Text PDF

Citrate has a prominent role as a substrate in cellular energy metabolism. Recently, citrate has been shown to drive inflammation. However, the role of citrate in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear.

View Article and Find Full Text PDF

NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome and triggering receptor expressed on myeloid cells-1 (TREM-1) are considered critical orchestrators of the inflammatory response in acute lung injury (ALI). However, few assumptions are based on the relationship between them. Here, we investigated the effect of NLRP3 inflammasome activation on the TREM-1 expression in lipopolysaccharide (LPS)-induced ALI and macrophages.

View Article and Find Full Text PDF

High infiltration of M2-polarized macrophages in the primary tumor indicates unfavorable prognosis and poor overall survival in the patients with triple-negative breast cancer (TNBC). Thus, reversing M2-polarized tumor-associated macrophages in the tumors has been considered as a potential therapeutic strategy for TNBC. Sphingomyelin synthase 2 (SMS2) is the key enzyme for sphingomyelin production, which plays an important role in plasma membrane integrity and function.

View Article and Find Full Text PDF

An immobilized enzyme system for bioconversion of Lo Han Kuo (LHK) mogrosides was established. β-Glucosidase which was covalently immobilized onto the glass spheres exhibited a significant bioconversion efficiency from pNPG to pnitrophenol over other carriers. Optimum operational pH and temperature were determined to be pH 4 and 30°C.

View Article and Find Full Text PDF