Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions.
View Article and Find Full Text PDFConnexins are the membrane proteins that form high-conductance plasma membrane channels and are the important constituents of gap junctions and hemichannels. Among different types of connexins, connexin 43 is the most widely expressed and studied gap junction proteins in astrocytes. Due to the key involvement of astrocytes in memory impairment and abundant expression of connexins in astrocytes, astroglial connexins have been projected as key therapeutic targets for Alzheimer's disease.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder, marked by cortical and hippocampal deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles and cognitive impairment. Studies indicate a prominent link between cerebrovascular abnormalities and the onset and progression of AD, where blood-brain barrier (BBB) dysfunction and metabolic disorders play key risk factors. Pericyte degeneration, endothelial cell damage, astrocyte depolarization, diminished tight junction integrity, and basement membrane disarray trigger BBB damage.
View Article and Find Full Text PDFCerebral ischemic injury is a leading cause of human mortality and disability, seriously threatening human health in the world. Activin A (Act A), as a well-known neuroprotective factor, could alleviate ischemic brain injury mainly through Act A/Smads signaling. In our previous study, a noncanonical Act A/Smads signal loop with self-amplifying property was found, which strengthened the neuroprotective effect of Act A.
View Article and Find Full Text PDFThe present study explored the role of endothelin-1, HS, and Nrf2 in remote preconditioning (RIPC)-induced beneficial effects in ischemia-reperfusion (I/R)-induced vascular dementia. Mice were subjected to 20 min of global ischemia by occluding both carotid arteries to develop vascular dementia, which was assessed using Morris water maze test on 7th day. RIPC was given by subjecting hind limb to four cycles of ischemia (5 min) and reperfusion (5 min) and it significantly restored I/R-induced locomotor impairment, neurological severity score, cerebral infarction, apoptosis markers along with deficits in learning and memory.
View Article and Find Full Text PDFHyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are activated during hyperpolarization, and there is an inward flow of current, which is termed as hyperpolarization-activated current, Ih. Initially, these channels were identified on the pacemaker cells of the heart. Nowadays, these are identified on different regions of the nervous system, including peripheral nerves, dorsal root ganglia, dorsal horns, and different parts of the brain.
View Article and Find Full Text PDFEur J Pharmacol
April 2019
Hydrogen sulfide (HS) is a gaseous molecule and is endogenously produced in the brain by cystathionine beta-synthase, 3-mercaptopyruvate-sulfurtransferase, cysteine aminotransferase and cystathionine γ-lyase. Physiologically, HS acts as a neuromodulator and regulates synaptic activity of neurons and glia to promote the development of long-term potentiation. A decrease in HS levels in the brain and plasma has been directly correlated with the degree of severity of Alzheimer disease in patients.
View Article and Find Full Text PDFIschemic stroke is caused by obstructed blood supply to the brain. It is a common as well as a serious health problem worldwide, which is often linked to disability and mortality. Here we studied, under the conditions of oxygen glucose deprivation (OGD), the expression of Notch signaling pathway proteins in PC12 cells.
View Article and Find Full Text PDFActivin A, a member of the transforming growth factor-beta superfamily, plays a neuroprotective role in multiple neurological diseases. Endoplasmic reticulum (ER) stress-mediated apoptotic and autophagic cell death is implicated in a wide range of diseases, including cerebral ischemia and neurodegenerative diseases. Thapsigargin was used to induce PC12 cell death, and Activin A was used for intervention.
View Article and Find Full Text PDFActivin A (Act A), a member of the transforming growth factor-beta (TGF-β), reduces neuronal apoptosis during cerebral ischemia through Act A/Smads signaling pathway. However, little is known about the effect of Act A/Smads pathway on autophagy in neurons. Here, we found that oxygen-glucose deprivation (OGD)-induced autophagy was suppressed by exogenous Act A in a concentration-dependent manner and enhanced by Act A/Smads pathway inhibitor (ActRIIA-Ab) in neuronal PC12 cells.
View Article and Find Full Text PDFActivin A (Act A), a member of transforming growth factor-β superfamily, plays a neuroprotective role in multiple neurological diseases through Act A/Smads signal activation. Traditionally, the up-regulation of Act A gene and extracellular Act A accumulation show the signal activation as a linear pathway. However, one of our discoveries indicated that Act A could lead a loop signaling in ischemic injury.
View Article and Find Full Text PDFThe Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intragastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks.
View Article and Find Full Text PDFActivin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
October 2013
AKT1 is a member of the serine/threoine AGC protein kinase family involved in thyroid cancer metabolism, growth, proliferation and survival. It is overexpressed in thyroid tumors. In this study, we designed two AKT1 specific DNAzymes (DRz1 and DRz2) that target AKT1 mRNA.
View Article and Find Full Text PDFIschemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood.
View Article and Find Full Text PDFIschemic cerebrovascular disease is one of the most common causes of death in the World. Exogenous activin A (ActA) protects neurons against toxicity and plays a central role in regulating the brain's response to injury. In the present study, we investigated the mechanisms involved in the neuroprotective effects of ActA in a model of hypoxic-ischemic brain disease.
View Article and Find Full Text PDF