Publications by authors named "Jin-Tang Du"

In Alzheimer's disease (AD), tau protein is abnormally hyperphosphorylated and aggregated into paired helical filaments (PHFs). It was discovered recently that tau is also O-GlcNAcylated in human brains. And O-GlcNAcylation may regulate phosphorylation of tau in a site-specific manner.

View Article and Find Full Text PDF

Copper (II) has been implicated in the pathology of Alzheimer's disease (AD) for the impaired homeostatic mechanism found in the brains of AD patients. Here we studied the binding properties of Cu(II) with the first microtubule-binding repeat, encompassing residues 256-273 of the human tau441 sequence. Additionally, the effect of Cu(II) on the assembly of this repeat was also investigated.

View Article and Find Full Text PDF

Phosphorylation of tau protein modulates both its physiological role and its aggregation into paired helical fragments, as observed in Alzheimer's diseased neurons. It is of fundamental importance to study paired helical fragment formation and its modulation by phosphorylation. This study focused on the fourth microtubule-binding repeat of tau, encompassing an abnormal phosphorylation site, Ser356.

View Article and Find Full Text PDF

Serine and threonine residues in many proteins can be modified by either phosphorylation or GlcNAcylation. To investigate the mechanism of O-GlcNAc and O-phosphate's reciprocal roles in modulating the degradation and activity of murine estrogen receptor beta (mER-beta), the conformational changes induced by O-GlcNAcylation and O-phosphorylation of Ser(16) in 17-mer model peptides corresponding to the N-terminal intrinsically disordered (ID) region of mER-beta were studied by NMR techniques, circular dichroism (CD), and molecular dynamics simulations. Our results suggest that O-phosphorylation discourages the turn formation in the S(15)STG(18) fragment.

View Article and Find Full Text PDF

Aggregation of abnormally phosphorylated tau in the form of tangs of paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease (AD) and other tauopathies. It is of fundamental importance to study the mechanism of PHF formation and its modulation by phosphorylation. In this work, we have focused on the first microtubule-binding repeat of tau encompassing an abnormal phosphorylation site Ser262.

View Article and Find Full Text PDF

Amyloid-beta peptide (Abeta) is the principal constituent of plaques associated with Alzheimer's disease (AD) and is thought to be responsible for the neurotoxicity associated with the disease. Copper binding to Abeta has been hypothesized to play an important role in the neruotoxicity of Abeta and free radical damage, and Cu2+ chelators represent a possible therapy for AD. However, many properties of copper binding to Abeta have not been elucidated clearly, and the location of copper binding sites on Abeta is also in controversy.

View Article and Find Full Text PDF

Uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) is the final product of hexosamine biosynthetic pathway (HSP) and the donor substrate for the modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (GlcNAc) catalyzed by O-GlcNAc transferase (OGT). Many analogs of UDP-GlcNAc were designed to interfere with the process of protein O-glycosylation by blocking OGT. A novel rearrangement reaction was observed in which phosphate-N-acetylglucosamine moiety migrated to 3' terminus of ribose in ESI-MS(n) of UDP-GlcNAc.

View Article and Find Full Text PDF

As the conversion between the monoionic (1) and diionic (2) form of the phosphate occurs, the phosphorylated peptides or proteins can not only cause the formation of a hydrogen bond between the phosphate group and the amide group but also change the strength of the hydrogen bond to form low-barrier hydrogen bonds (LBHBs). This reversible protonation of the phosphate group, which changes both the electrostatic properties of the phosphate group and the strength of the hydrogen bond, provides a possible mechanism in regulating protein function.

View Article and Find Full Text PDF

The tau protein plays an important role in some neurodegenerative diseases including Alzheimer's disease (AD). Neurofibrillary tangles (NFTs), a biological marker for AD, are aggregates of bundles of paired helical filaments (PHFs). In general, the alpha-sheet structure favors aberrant protein aggregates.

View Article and Find Full Text PDF

In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to determine the effects of abnormal phosphorylation on the local structure. A series of peptides corresponding to isolated regions of tau protein have been successfully synthesized using Fmoc-based chemistry and their conformations were determined by 1H NMR spectroscopy and circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF