A series of fused bicyclic heterocycles was identified as potent and selective 5-HT(2A) receptor antagonists. Optimization of the series resulted in compounds that had improved PK properties, favorable CNS partitioning, good pharmacokinetic properties, and significant improvements on deep sleep (delta power) and sleep consolidation.
View Article and Find Full Text PDFRecent developments in sleep research suggest that antagonism of the serotonin 5-HT(2A) receptor may improve sleep maintenance insomnia. We herein report the discovery of a series of potent and selective serotonin 5-HT(2A) receptor antagonists based on a phenethylpiperazine amide core structure. When tested in a rat sleep pharmacology model, these compounds increased both sleep consolidation and deep sleep.
View Article and Find Full Text PDFSerotonin, which is stored in platelets and is released during thrombosis, activates platelets via the 5-HT(2A) receptor. 5-HT(2A) receptor inverse agonists thus represent a potential new class of antithrombotic agents. Our medicinal program began with known compounds that displayed binding affinity for the recombinant 5-HT(2A) receptor, but which had poor activity when tested in human plasma platelet inhibition assays.
View Article and Find Full Text PDF