Fabry disease (FD, OMIM 301500) is a rare X-linked inherited lysosomal storage disorder associated with reduced activities of α-galactosidase A (aGal, EC 3.2.1.
View Article and Find Full Text PDFFabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease.
View Article and Find Full Text PDFFabry disease is an X-linked lysosomal storage disorder caused by a deficiency of α-galactosidase A and subsequent accumulation of glycosphingolipids with terminal α-D-galactosyl residues. The molecular process through which this abnormal metabolism of glycosphingolipids causes multisystem dysfunction in Fabry disease is not fully understood. We sought to determine whether dysregulated DNA methylation plays a role in the development of this disease.
View Article and Find Full Text PDFApproved therapies for Fabry disease (FD) include migalastat, an oral pharmacological chaperone, and agalsidase beta and agalsidase alfa, 2 forms of enzyme replacement therapy. Broad tissue distribution may be beneficial for clinical efficacy in FD, which has severe manifestations in multiple organs. Here, migalastat and agalsidase beta biodistribution were assessed in mice and modeled using physiologically based pharmacokinetic (PBPK) analysis, and migalastat biodistribution was subsequently extrapolated to humans.
View Article and Find Full Text PDFFabry disease is caused by deficient activity of α-galactosidase A, an enzyme that hydrolyzes the terminal α-galactosyl moieties from glycolipids and glycoproteins, and subsequent accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb), globotriaosylsphingosine (lyso-Gb), and galabiosylceramide. However, there is no known link between these compounds and disease severity. In this study, we compared Gb isoforms (various fatty acids) and lyso-Gb analogs (various sphingosine modifications) in two strains of Fabry disease mouse models: a pure C57BL/6 (B6) background or a B6/129 mixed background, with the latter exhibiting more prominent cardiac and renal hypertrophy and thermosensation deficits.
View Article and Find Full Text PDFLysosomal replacement enzymes are essential therapeutic options for rare congenital lysosomal enzyme deficiencies, but enzymes in clinical use are only partially effective due to short circulatory half-life and inefficient biodistribution. Replacement enzymes are primarily taken up by cell surface glycan receptors, and glycan structures influence uptake, biodistribution, and circulation time. It has not been possible to design and systematically study effects of different glycan features.
View Article and Find Full Text PDFHere we present our progress in inducing an ectopic brown adipose tissue (BAT) phenotype in skeletal muscle (SKM) as a potential gene therapy for obesity and its comorbidities. We used ultrasound-targeted microbubble destruction (UTMD), a novel targeted, non-viral approach to gene therapy, to deliver genes in the BAT differentiation pathway into rodent SKM to engineer a thermogenic BAT phenotype with ectopic mUCP-1 overexpression. In parallel, we performed a second protocol using wild-type Ucp-1-null knockout mice to test whether the effects of the gene therapy are UCP-1 dependent.
View Article and Find Full Text PDFFabry disease is a glycosphingolipidosis caused by deficient activity of α-galactosidase A; it is one of a few diseases that are associated with priapism, an abnormal prolonged erection of the penis. The goal of this study was to investigate the pathogenesis of Fabry disease-associated priapism in a mouse model of the disease. We found that Fabry mice develop late-onset priapism.
View Article and Find Full Text PDFObjective: To elucidate the mechanisms of up regulated expression of cytoplasmic phospholipase A2 (CPLA2) induced by one lung ventilation (OLV) by investigating the interactions between nuclear factor kappaB (NF-κB) and C-PLA2.
Methods: Forty-eight healthy Japanese white rabbits were randomized into control group, solvent treatment group (group S), NF-κB inhibitor (PDTC)/solvent treatment group ( group PS), C-PLA2 inhibitor (AACOCF3)/solvent treatment group (group AS), OLV group (group O), solvent treatment plus OLV group (SO group), NFκB inhibitor (PDTC)/solvent treatment plus OLV group (group PSO) and CPLA2 inhibitor (AACOCF3)/solvent treatment plus OLV group (group ASO). ELISA was used to detect arachidonic acid (AA) content in the lung tissues, and NFκB and CPLA2 expressions were detected by Western blotting and quantitative PCR.
Fabry disease is caused by deficient activity of α-galactosidase A and subsequent accumulation of glycosphingolipids (mainly globotriaosylceramide, Gb3), leading to multisystem organ dysfunction. Oxidative stress and nitric oxide synthase (NOS) uncoupling are thought to contribute to Fabry cardiovascular diseases. We hypothesized that decreased tetrahydrobiopterin (BH4) plays a role in the pathogenesis of Fabry disease.
View Article and Find Full Text PDFEstablished adriamycin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50% in a year. It has been known that ANGPTLs has various functions in lipid metabolism, inflammation, cancer cell invasion, hematopoietic stem activity and diabetes.
View Article and Find Full Text PDFFabry disease is caused by deficient activity of α-galactosidase A and subsequent intracellular accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3). Vascular endothelial cells may play important roles in disease pathogenesis, and are one of the main target cell types in therapeutic interventions. In this study, we generated immortalized aortic endothelial cell lines from a mouse model of Fabry disease.
View Article and Find Full Text PDFEnzyme replacement therapy (ERT) is an effective treatment for several lysosomal storage disorders (LSDs). Intravenously infused enzymes are taken up by tissues through either the mannose 6-phosphate receptor (M6PR) or the mannose receptor (MR). It is generally believed that M6PR-mediated endocytosis is a key mechanism for ERT in treating LSDs that affect the non-macrophage cells of visceral organs.
View Article and Find Full Text PDFAims/hypothesis: ANGPTL8 is a circulatory hormone secreted from liver and adipose tissue that promotes pancreatic beta cell proliferation and interferes with triacylglycerol metabolism in mice. The clinical significance of its effects on inducing beta cell proliferation is limited because it causes severe hypertriacylglycerolaemia.
Methods: We employed ultrasound-targeted microbubble destruction (UTMD) to deliver human ANGPTL8 gene plasmids to the pancreas, liver and skeletal muscle of normal adult rats.
Fabry disease is caused by deficient activity of lysosomal enzyme α-galactosidase A. The enzyme deficiency results in intracellular accumulation of glycosphingolipids, leading to a variety of clinical manifestations including hypertrophic cardiomyopathy and renal insufficiency. The mechanism through which glycosphingolipid accumulation causes these manifestations remains unclear.
View Article and Find Full Text PDFUnlabelled: Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control.
Methods And Results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation.
Krabbe disease is a devastating neurodegenerative lysosomal storage disorder caused by a deficiency of β-galactocerebrosidase (GALC). Gene therapy is a promising therapeutic approach for Krabbe disease. As the human brain is large and it is difficult to achieve global gene transduction, the efficacy of cross-correction is a critical determinant of the outcome of gene therapy for this disease.
View Article and Find Full Text PDFThe aim of our study was to measure globotriaosylceramide (Gb(3)) and lyso-Gb(3) levels by tandem mass spectrometry in the urine and kidney in Fabry (gla knockout) mice and wild-type controls. We found that urine Gb(3) of male and female Fabry mice was higher than wild-type mice of the same sex but also significantly higher in male mice compared with females of the same genotype. In kidney tissue, sex and genotype-dependent differences in Gb(3) levels paralleled those in the urine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2010
Most lysosomal storage diseases (LSDs) are life-threatening genetic diseases. The pathogenesis of these diseases is poorly understood. Induced pluripotent stem (iPS) cell technology offers new opportunities for both mechanistic studies and development of stem cell- based therapies.
View Article and Find Full Text PDFAlthough tenascin-C (TN) is highly up-regulated during the proliferation of reactive astrocytes, little is known about the function of TN at injury sites in the central nervous system (CNS). Here, the function of TN-expressing astrocytes in the injured brain was investigated by analyzing TN-deficient mice with stab-wound injuries of the cerebral cortex. Glial fibrillary acid protein expression after injury was down-regulated earlier in TN-deficient mice than in wild-type (WT) mice.
View Article and Find Full Text PDFFabry disease, an X-linked systemic vasculopathy, is caused by a deficiency of alpha-galactosidase A resulting in globotriaosylceramide (Gb(3)) storage in cells. The pathogenic role of Gb(3) in the disease is not known. Based on previous work, we tested the hypothesis that accumulation of Gb(3) in the vascular endothelium of Fabry disease is associated with increased production of reactive oxygen species (ROS) and increased expression of cell adhesion molecules.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2008
Intravenous enzyme replacement therapy (ERT) with purified glucocerebrosidase (GLA) leads to significant improvement of the clinical manifestations in patients with Type 1 Gaucher disease. However, the high doses required, slow response and inability to recover most of the infused enzyme in the target tissues may be attributed to losses occurring during transit en route to the lysosome. Preincubation of GLA with isofagomine (IFG), a slow-binding inhibitor, significantly increased stability of the enzyme to heat, neutral pH and denaturing agents in vitro.
View Article and Find Full Text PDFFabry disease is an inborn error of glycosphingolipid catabolism resulting from a deficiency of lysosomal enzyme alpha-galactosidase A. The major clinical manifestations of the disease, such as stroke, cardiac dysfunction, and renal impairment, are thought to be caused by vasculopathy due to progressive accumulation of globotriaosylceramide in vascular endothelial cells. The pathogenesis of the vasculopathy has not been elucidated.
View Article and Find Full Text PDFGloboid cell leukodystrophy (GLD, Krabbe disease) is a severe demyelinating disease caused by a genetic defect of beta-galactocerebrosidase (GALC). To date treatment to GLD is limited to hematopoietic stem cell transplantation. Experimental approaches by means of gene therapy in twitcher mouse, an authentic murine model of human GLD, showed significant but only marginal improvements of the disease.
View Article and Find Full Text PDFThe use of stem cells has enabled the successful generation of simple organs. However, anatomically complicated organs such as the kidney have proven more refractory to stem-cell-based regenerative techniques. Given the limits of allogenic organ transplantation, an ultimate therapeutic solution is to establish self-organs from autologous stem cells and transplant them as syngrafts back into donor patients.
View Article and Find Full Text PDF