Publications by authors named "Jin-Na Min"

We previously reported that the canonical innate immune receptor toll-like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and epithelial cells TLR4 to pulmonary homeostasis using genetic-specific, lung- and cell-targeted in vivo methods.

View Article and Find Full Text PDF
Article Synopsis
  • Leptospirosis is a severe disease linked to high mortality rates, and the study highlights that the immune response of patients significantly influences their chances of survival, with fatal cases showing specific immune deficiencies.
  • Analysis of hospitalized patients revealed that those who died had lower levels of the antimicrobial peptide cathelicidin and higher levels of pro-inflammatory receptors, while survivors displayed stronger immune responses related to fighting infections.
  • The study found that administering the active form of cathelicidin in a hamster model improved survival rates, suggesting that enhancing the host's immune response could be a promising new treatment strategy for leptospirosis.
View Article and Find Full Text PDF

Exposure to hyperoxia results in acute lung injury. A pathogenic consequence of hyperoxia is endothelial injury. Macrophage migration inhibitory factor (MIF) has a cytoprotective effect on lung endothelial cells; however, the mechanism is uncertain.

View Article and Find Full Text PDF

Tumor suppressor p53 plays an important role in mediating growth inhibition upon telomere dysfunction. Here, we show that loss of the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21(WAF1/CIP1)) increases apoptosis induction following telomerase inhibition in a variety of cancer cell lines and mouse xenografts. This effect is highly specific to p21, as loss of other checkpoint proteins and CDK inhibitors did not affect apoptosis.

View Article and Find Full Text PDF

Recent studies implicate the muscle-specific ubiquitin ligase muscle RING finger-1 (MuRF1) in inhibiting pathological cardiomyocyte growth in vivo by inhibiting the transcription factor SRF. These studies led us to hypothesize that MuRF1 similarly inhibits insulin-like growth factor-I (IGF-I)-mediated physiological cardiomyocyte growth. We identified two lines of evidence to support this hypothesis: IGF-I stimulation of cardiac-derived cells with MuRF1 knockdown 1) exhibited an exaggerated hypertrophy and, 2) conversely, increased MuRF1 expression-abolished IGF-I-dependent cardiomyocyte growth.

View Article and Find Full Text PDF

Heat shock factor binding protein 1 (HSBP1) is a 76 amino acid polypeptide that contains two arrays of hydrophobic heptad repeats and was originally identified through its interaction with the oligomerization domain of heat shock factor 1 (Hsf1), suppressing Hsf1's transcriptional activity following stress. To examine the function of HSBP1 in vivo, we generated mice with targeted disruption of the hsbp1 gene and examined zebrafish embryos treated with HSBP1-specific morpholino oligonucleotides. Our results show that hsbp1 is critical for preimplantation embryonic development.

View Article and Find Full Text PDF

The INO80 (inositol requiring mutant 80) chromatin remodeling complex plays important roles in transcriptional regulation and DNA replication and repair, and consists of several functional protein subunits, including the critical Ino80 ATPase catalytic subunit. While the function of INO80 has been studied in yeast and mammalian cell lines, we do not know how mIno80 contributes to the maintenance of genome stability to prevent cancer development in mice. Here, we use a conditional knockout approach to explore the cellular and organismal functions of mIno80.

View Article and Find Full Text PDF

The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection.

View Article and Find Full Text PDF

The proper maintenance of telomeres is essential for genome stability. Mammalian telomere maintenance is governed by a number of telomere binding proteins, including the newly identified CTC1-STN1-TEN1 (CST) complex. However, the in vivo functions of mammalian CST remain unclear.

View Article and Find Full Text PDF

Introduction: Previous studies have tested the hypothesis that calpain and/or proteasome inhibition is beneficial in Duchenne muscular dystrophy, based largely on evidence that calpain and proteasome activities are enhanced in the mdx mouse.

Methods: mRNA expression of ubiquitin-proteasome and calpain system components were determined using real-time polymerase chain reaction in skeletal muscle and heart in the golden retriever muscular dystrophy model. Similarly, calpain 1 and 2 and proteasome activities were determined using fluorometric activity assays.

View Article and Find Full Text PDF

Proteotoxicity caused by an imbalanced protein quality control surveillance system is believed to contribute to the phenotypes associated with aging as well as many neurodegenerative diseases. Understanding and monitoring the impact of proteotoxicity in these processes offers researchers keen insight into the biology of aging, as well as other conditions that share similar pathological etiologies. In Section 2, we present various technical approaches that can be used to calculate and characterize the phenotypes associated with aging that are linked to increased proteotoxicity.

View Article and Find Full Text PDF
Article Synopsis
  • CHIP acts as a co-chaperone and ubiquitin ligase that protects cells from stress-induced death by interacting with Daxx, a protein associated with apoptosis.
  • This interaction blocks the phosphorylation of p53 by HIPK2, which is crucial for triggering the p53-dependent apoptotic pathway, thereby suppressing cell death signals.
  • CHIP facilitates the ubiquitination of Daxx, preventing its degradation and allowing it to accumulate in the cell, ultimately integrating stress responses with survival pathways.
View Article and Find Full Text PDF

During the course of biological aging, there is a gradual accumulation of damaged proteins and a concomitant functional decline in the protein degradation system. Protein quality control is normally ensured by the coordinated actions of molecular chaperones and the protein degradation system that collectively help to maintain protein homeostasis. The carboxyl terminus of Hsp70-interacting protein (CHIP), a ubiquitin ligase/cochaperone, participates in protein quality control by targeting a broad range of chaperone substrates for proteasome degradation via the ubiquitin-proteasome system, demonstrating a broad involvement of CHIP in maintaining cytoplasmic protein quality control.

View Article and Find Full Text PDF

The mammalian small heat shock protein (sHSPs) family is comprised of 10 members and includes HSPB1, which is proposed to play an essential role in cellular physiology, acting as a molecular chaperone to regulate diverse cellular processes. Whilst differential roles for sHSPs are suggested for specific tissues, the relative contribution of individual sHSP family members in cellular and organ physiology remains unclear. To address the function of HSPB1 in vivo and determine its tissue-specific expression during development and in the adult, we generated knock-in mice where the coding sequence of hspb1 is replaced by a lacZ reporter gene.

View Article and Find Full Text PDF

Mammalian ocular lens development results via a differentiation program that is highly regulated by tissue-specific transcription factors. Central to this is the terminal differentiation of fiber cells, which develop from epithelial cells on the anterior surface of the lens, accompanied by a change in cell shape and expression of structural proteins (such as membrane proteins MP19, MIP26, connexin 43, 46, and 50, cytoskeletal proteins CP49, CP115, and alpha, beta, and gamma crystallins), creating a transparent, refractive index gradient in the lens. Mutations in genes controlling eye development and in lens structural protein genes are associated with multiple ocular developmental disorders, including cataracts and other opacities of the lens.

View Article and Find Full Text PDF