Two novel chiral conjugated polymers and designed and synthesized from a pair of circularly polarized thermally activated delayed fluorescence (CP-TADF) enantiomers are presented in this work. The two polymers exhibited excellent TADF properties with small singlet-triplet energy gaps (Δ) of 0.045 and 0.
View Article and Find Full Text PDFPlanar chiral organic fluorescent materials that exhibit high chiral stability, high efficiency and circularly polarized luminescence (CPL) currently remain an unresolved issue despite their promising applications in optical encryption and 3D-display. Herein, a pair of new donor-chiral π-acceptor (D-π*-A) type planar chiral thermally activated delayed fluorescence (TADF) enantiomers, namely /-PXZ-PT, are developed. Such a D-π*-A type structure completely suppresses the racemisation of the planar chirality, making it possible to prepare circularly polarized organic light-emitting diodes (CP-OLEDs) by vacuum deposition processing.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2021
A strategy of chiral donor-acceptor copolymerization is proposed to develop chiral nonconjugated polymers with thermally activated delayed fluorescence (TADF). Based on this strategy, two pairs of chiral polymers (R,R)-/(S,S)-pTpAcDPS and (R,R)-/(S,S)-pTpAcBP were synthesized. The alternating copolymerization of the chiral donors and acceptors could effectively separate the frontier molecular orbitals, which made the polymers show small ΔE of 0.
View Article and Find Full Text PDF