Lithium sulfur batteries (LSBs) have attracted tremendous attention owing to their high theoretical specific capacity and specific energy. However, their practical applications are hindered by poor cyclic life, mainly caused by polysulfide shuttling. The development of advanced materials to mitigate the polysulfide shuttling effect is urgently demanded.
View Article and Find Full Text PDFTwo-dimensional metal-organic nanosheets (2D MONs) are an emerging class of ultrathin, porous, and crystalline materials. The organic/inorganic hybrid nature offers MONs distinct advantages over other inorganic nanosheets in terms of diversity of organic ligands and metal notes. Compared to bulk three-dimensional metal-organic frameworks, 2D MONs possess merits of high density and readily accessible catalytic sites, reduced diffusion pathways for reactants/products, and fast electron transport.
View Article and Find Full Text PDFThe development of efficient and sustainable methodologies for the synthesis of N-heterocycles is a constant focus of organic synthesis. Herein an electrochemical method is reported for the synthesis of benzimidazoles through dehydrogenative cyclization of easily available N-aryl amidines. The reactions were conducted under simple constant current conditions in an undivided cell without need for catalysts, chemical oxidants, or additives, and produced H as the only theoretical byproduct.
View Article and Find Full Text PDFA bottom-up approach was developed to prepare TEMPO radical decorated hollow aromatic frameworks (HPAF-TEMPO) by using TEMPO radical functionalized monomers and SiO2 nanospheres as templates. The accessible inner layer, high density of TEMPO sites, and hybrid micro-/mesopores of the HPAF-TEMPO enable the aerobic oxidation of a broad range of alcohols with high efficiency and excellent selectivity.
View Article and Find Full Text PDFMultivariate metal-organic frameworks (MTV-MOFs) incorporating multiple chemical functionalities within single-phase crystalline materials show superior properties that arise from synergistic effects. Herein, we report an efficient and versatile method for the growth of highly oriented multivariate surface-attached MOFs (MTV-SURMOFs) by the combination of the liquid-epitaxial growth method (LPE) and the mixed-linker strategy. Twenty-six MTV-SURMOFs of the [MLP] type with a maximum of five different dicarboxylate linkers (L) were deposited onto suitably functionalized surfaces.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) featuring multiple catalytic units are excellent platforms for heterogeneous catalysis. However, the synergism between multiple catalytic units for catalysis is far from being well understood. Herein, we reported the synthesis of a robust 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) radical-functionalized Zr-MOF (UiO-68-TEMPO) in the form of single-crystalline and microsized crystals with varied missing linker defects.
View Article and Find Full Text PDFMicromachines (Basel)
May 2018
In this article, we have investigated the influence of the nitro side-group on the single molecular conductance of pyridine-based molecules by scanning tunneling microscopy break junction. Single molecular conductance of 4,4'-bipyridine (BPY), 3-nitro-4-(pyridin-4-yl)pyridine (BPY-N), and 3-nitro-4-(3-nitropyridin-4-yl)pyridine (BPY-2N) were measured by contact with Au electrodes. For the BPY molecular junction, two sets of conductance were found with values around 10 G₀ (high G) and 10 G₀ (low G).
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
July 2016
In order to reveal the mechanism of LLLI accelerating teeth moving, we investigated the changes of alkaline phosphatase and intracellular calcium concentration when osteoblasts under stress were subjected low-level-laser-irradiation (LLLI). MG-63 cells were divided into four groups: control group, stress group, LLLI group and LLLI-stress group. Osteoblasts were subjected to the mechanical stress by a four-point bending system at 0.
View Article and Find Full Text PDFAs well-oriented, surface-bound metal-organic frameworks become the centerpiece of many new applications, a profound understanding of their growth mode becomes necessary. This work shows that the currently favored model of surface templating is in fact a special case valid only for systems with a more or less cubic crystal shape, while in less symmetric systems crystal ripening and minimization of surface energies dominate the growth process.
View Article and Find Full Text PDFThe layer-by-layer growth of a surface-attached metal-organic framework (SURMOF), [Cu2(F4bdc)2(dabco)] (F4bdc = tetrafluorobenzene-1,4-dicarboxylate and dabco = 1,4-diazabicyclo-[2.2.2]octane), on carboxylate- and pyridine-terminated surfaces has been investigated by various surface characterization techniques.
View Article and Find Full Text PDFFlexible in many aspects: inkjet printing of metal-organic frameworks permits their larger area, high-resolution deposition in any desired pattern, even in the form of gradients or shades. When flexible substrates are used, many applications can be envisioned, such as sensing and capture of hazardous gases for personal safety measures.
View Article and Find Full Text PDF