Biomed Opt Express
February 2024
Terahertz (THz) electromagnetic waves, known for their unique response to water, offer promising opportunities for next-generation biomedical diagnostics and novel cancer therapy technologies. This study investigated the impedance-matching effect, which enhances the efficiency of THz wave delivery into tissues and compensates for the signal distortion induced by the refractive index mismatch between the target and the sample substrate. Three candidate biocompatible materials, water, glycerol, and petroleum jelly were applied to a skin phantom and compared using THz two-dimensional imaging and time-of-flight imaging methods.
View Article and Find Full Text PDFThree-dimensional visualization of cellular and subcellular-structures in histological-tissues is essential for understanding the complexities of biological-phenomena, especially with regards structural and spatial relationships and pathologlical-diagnosis. Recent advancements in tissue-clearing technology, such as Magnified Analysis of Proteome (MAP), have significantly improved our ability to study biological-structures in three-dimensional space; however, their wide applicability to a variety of tissues is limited by long incubation-times and a need for advanced imaging-systems that are not readily available in most-laboratories. Here, we present optimized MAP-based method for paper-thin samples, Paper-MAP, which allow for rapid clearing and subsequent imaging of three-dimensional sections derived from various tissues using conventional confocal-microscopy.
View Article and Find Full Text PDFGlioblastoma (GBM) is a disease without any definite cure. Numerous approaches have been tested in efforts to conquer this brain disease, but patients invariably experience recurrence or develop resistance to treatment. New surgical tools, carefully chosen samples, and experimental methods are enabling discoveries at single-cell resolution.
View Article and Find Full Text PDF