In order to explore the impact of antibiotics (enrofloxacin) on microbial community in aquatic environment, an indoor aquatic ecological model was built, and different concentrations of enrofloxacin (0.05, 0.5, 5, and 50 mg/L) were added in the aquatic ecological model.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) has become a major concern worldwide. To evaluate the AMR of in aquaculture farms of Zhanjiang, China, a total of 90 samples from the water, soil, and sediment of three aquaculture farms (farms I, II, and III) in Zhanjiang were collected, and 90 strains of were isolated for drug resistance analysis and AMR gene detection. The results indicated that the isolated 90 strains of have high resistance rates to penicillin, amoxicillin, ampicillin, tetracycline, compound sulfamethoxazole, sulfisoxazole, chloramphenicol, florfenicol, and rifampin (≥70%).
View Article and Find Full Text PDFBackground: Antibiotics are widely used to prevent and control diseases and infection for reducing the morbidity and mortality of animals, because of the high-density stocking in modern food-source animal production. However, the overuse of antibiotics in animal farms results in antimicrobial resistance (AMR), and causes public health issues through the food chain. Therefore, the AMR analysis of the farms and their surrounding environments is great significance to public health.
View Article and Find Full Text PDFThis study investigated and identified the distribution of drug resistance genes in feces, soil, and water of duck farms in Zhanjiang, China, and analyzed the drug resistance of Salmonella in the duck farm environment. PCR was used to assess the distribution of 25 resistance genes that are common in the duck farm environment. The isolation, biochemical identification, PCR identification of Salmonella, and the minimum inhibitory concentration (MIC) of 22 drugs were measured by micro-broth double dilution.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
June 2014
By using fumigation extraction and phospholipid fatty acid (PLFA) methods, the change of characteristics of soil microbial community structure caused by residue of colistin sulfate (CS) was studied. The results showed that the CS (w(cs) > or = 5 mg x kg(-1)) had a significant effect on the microbial biomass carbon (MBC) and it was dose-dependent where MBC decreased with the increase of CS concentration in soil. The MBC in soil decreased by 52.
View Article and Find Full Text PDF