J Chromatogr B Analyt Technol Biomed Life Sci
November 2017
An effective thin layer chromatography (TLC) purification procedure coupled to high-performance liquid chromatography (HPLC) method was developed for the determination of florfenicol (FF) in pig, chicken and fish feedstuffs. The feedstuff samples were extracted with ethyl acetate, defatted with n-hexane saturated with acetonitrile, and further purified by TLC. The chromatographic separation was performed on a Waters Symmetry C column using an isocratic procedure with acetonitrile-water (35:65, v/v) at 0.
View Article and Find Full Text PDFBackground: Huntington's Disease (HD) is a progressive neurodegenerative disorder caused by an expansion in the polyglutamine (polyQ) region of the Huntingtin (HTT) gene. The clinical features of HD are characterized by cognitive, psychological, and motor deficits. Molecular instability, a core component in neurological disease progression, can be comprehensively evaluated through longitudinal transcriptomic profiling.
View Article and Find Full Text PDFThe use of bone marrow mesenchymal stem cell- (MSC) transplantation therapy for cardiac diseases is limited due to poor survival of implanted cells. MicroRNAs (miRNAs) have been reported to be involved in regulating almost all cellular processes, including apoptosis. In this study, we found that the miRNA profile was altered during apoptosis induced by hypoxia and serum deprivation (hypoxia/SD).
View Article and Find Full Text PDFInduced pluripotent Huntington's disease monkey stem cells (rHD-iPSCs) were established by the overexpression of rhesus macaque transcription factors (Oct4, Sox2, and Klf4) in transgenic Huntington's monkey skin fibroblasts. The rHD-iPSCs were pluripotent and capable of differentiating into neuronal cell types in vitro and developed teratoma in immune compromised mice. We also demonstrated the upregulation of endogenous Oct4 and Sox2 after successful reprogramming to pluripotency in rHD-iPSCs, which was not expressed in skin fibroblasts.
View Article and Find Full Text PDFNon-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene.
View Article and Find Full Text PDFWe demonstrate enhanced transgenesis in mice by intracytoplasmic injection of envelope-free lentivirus. Envelope-free lentivirus carrying the green fluorescent protein (GFP) gene under the control of the ubiquitin promoter (LVU-GFP) was microinjected into the cytoplasm of mouse zygotes prior to embryo transfer. Ninety-seven percent (31/32) of the adult mice were confirmed transgenic by PCR and Southern blot analysis; all founder mice express GFP when tail snips were examined by fluorescent microscopy prior to genomic DNA extraction.
View Article and Find Full Text PDF