Publications by authors named "Jin-Jing Lee"

Recently, many efforts have been made to address the rapid spread of newly identified COVID-19 virus variants. Wastewater-based epidemiology (WBE) is considered a potential early warning tool for identifying the rapid spread of this virus. This study investigated the occurrence of SARS-CoV-2 in eight wastewater treatment plants (WWTPs) and their sewerage systems which serve most of the population in Taoyuan City, Taiwan.

View Article and Find Full Text PDF

To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution].

View Article and Find Full Text PDF

The Tamsui River basin is located in Northern Taiwan and encompasses the most metropolitan city in Taiwan, Taipei City. The Taiwan Environmental Protection Administration (EPA) has established 38 water quality monitoring stations in the Tamsui River basin and performed regular river water quality monitoring for the past two decades. Because of the limited budget of the Taiwan EPA, adjusting the monitoring program while maintaining water quality data is critical.

View Article and Find Full Text PDF

Seafood farmed in arsenic (As)-contaminated areas is a major exposure pathway for the ingestion of inorganic As by individuals in the southwestern part of Taiwan. This study presents a probabilistic risk assessment using limited data for inorganic As intake through the consumption of the seafood by local residents in these areas. The As content and the consumption rate are both treated as probability distributions, taking into account the variability of the amount in the seafood and individual consumption habits.

View Article and Find Full Text PDF

This paper assesses health risks due to the ingestion of inorganic arsenic from fish and shellfish farmed in blackfoot disease areas by general public in Taiwan. The provisional tolerable weekly intake of arsenic set by FAO/WHO and the target cancer risk assessment model proposed by USEPA were integrated to evaluate the acceptable consumption rate. Five aquacultural species, tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), mullet (Mugil cephalus), clam (Meretrix lusoria) and oyster (Crassostrea gigas) were included.

View Article and Find Full Text PDF

Spatial distributions of groundwater quality are commonly heterogeneous, varying with depths and locations, which is important in assessing the health and ecological risks. Owing to time and cost constraints, it is not practical or economical to measure arsenic everywhere. A predictive model is necessary to estimate the distribution of a specific pollutant in groundwater.

View Article and Find Full Text PDF

This study spatially analyzed potential carcinogenic risks associated with ingesting arsenic (As) contents in aquacultural smeltfish (Plecoglossus altirelis) from the Lanyang Plain of northeastern Taiwan. Sequential indicator simulation (SIS) was adopted to reproduce As exposure distributions in groundwater based on their three-dimensional variability. A target cancer risk (TR) associated with ingesting As in aquacultural smeltfish was employed to evaluate the potential risk to human health.

View Article and Find Full Text PDF

This study analyzed the potential health risk associated with the ingestion of arsenic-affected groundwater in the arseniasis-endemic Lanyang plain of northeastern Taiwan. Indicator kriging was used to estimate arsenic concentrations in groundwater. Target cancer risk (TR) and dose response functions were adopted to evaluate the potential health risk based on the estimated arsenic concentration distributions.

View Article and Find Full Text PDF