Networks of optical clocks find applications in precise navigation, in efforts to redefine the fundamental unit of the 'second' and in gravitational tests. As the frequency instability for state-of-the-art optical clocks has reached the 10 level, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres.
View Article and Find Full Text PDFNon-line-of-sight (NLOS) imaging enables monitoring around corners and is promising for diverse applications. The resolution of transient NLOS imaging is limited to a centimeter scale, mainly by the temporal resolution of the detectors. Here, we construct an up-conversion single-photon detector with a high temporal resolution of ∼1.
View Article and Find Full Text PDF