Soft robots have received much attention due to their impressive capabilities including high flexibility and inherent safety features for humans or unstructured environments compared with hard-bodied robots. Soft actuators are the crucial components of soft robotic systems. Soft robots require dexterous soft actuators to provide the desired deformation for different soft robotic applications.
View Article and Find Full Text PDFForceps, clamps, and haemostats are essential surgical tools required for all surgical interventions. While they are widely used to grasp, hold, and manipulate soft tissue, their metallic rigid structure may cause tissue damage due to the potential risk of applying excessive gripping forces. Soft pneumatic surgical grippers fabricated by silicone elastomeric materials with low Young's modulus may offer a promising solution to minimize this unintentional damage due to their inherent excellent compliance and compressibility.
View Article and Find Full Text PDFThis paper contributes to a new design of the three-dimensional printable robotic ball joints capable of creating the controllable stiffness linkage between two robot links through pneumatic actuation. The variable stiffness ball joint consists of a soft pneumatic elastomer actuator, a support platform, an inner ball and a socket. The ball joint structure, including the inner ball and the socket, is three-dimensionally printed using polyamide-12 (PA12) by selective laser sintering (SLS) technology as an integral mechanism without the requirement of assembly.
View Article and Find Full Text PDFThe compliant nature of soft fingers allows for safe and dexterous manipulation of objects by humans in an unstructured environment. A soft prosthetic finger design with tactile sensing capabilities for texture discrimination and subsequent sensory stimulation has the potential to create a more natural experience for an amputee. In this work, a pneumatically actuated soft biomimetic finger is integrated with a textile neuromorphic tactile sensor array for a texture discrimination task.
View Article and Find Full Text PDFEmerging soft exoskeletons pose urgent needs for high-performance strain sensors with tunable linear working windows to achieve a high-precision control loop. Still, the state-of-the-art strain sensors require further advances to simultaneously satisfy multiple sensing parameters, including high sensitivity, reliable linearity, and tunable strain ranges. Besides, a wireless sensing system is highly desired to enable facile monitoring of soft exoskeleton in real time, but is rarely investigated.
View Article and Find Full Text PDFSoft robotic fingers have shown great potential for use in prostheses due to their inherent compliant, light, and dexterous nature. Recent advancements in sensor technology for soft robotic systems showcase their ability to perceive and respond to static cues. However, most of the soft fingers for use in prosthetic applications are not equipped with sensors which have the ability to perceive texture like humans can.
View Article and Find Full Text PDFMicromachines (Basel)
April 2019
This paper presents fabric-based soft robotic modules with primitive morphologies, which are analogous to basic geometrical polygons-trilateral and quadrilateral. The two modules are the inflatable beam (IB) and fabric-based rotary actuator (FRA). The FRA module is designed with origami-inspired V-shaped pleats, which creates a trilateral outline.
View Article and Find Full Text PDFMicromachines (Basel)
March 2019
Forceps are essential tools for digital nerve manipulation during digital nerve repair surgery. However, surgeons have to operate forceps with extreme caution to prevent detrimental post-operative complications caused by over-gripping force. Their intrinsically safe characteristics have led to the increasing adoption of soft robotics in various biomedical applications.
View Article and Find Full Text PDFSoft compliant gripping is essential in delicate surgical manipulation for minimizing the risk of tissue grip damage caused by high stress concentrations at the point of contact. It can be achieved by complementing traditional rigid grippers with soft robotic pneumatic gripper devices. This manuscript describes a rod-based approach that combined both 3D-printing and a modified soft lithography technique to fabricate the soft pneumatic gripper.
View Article and Find Full Text PDFBackground: The growing ageing population and high prevalence of knee osteoarthritis (OA) in athletes across nations have created a strong demand for improved non-invasive therapeutic alternatives for knee OA. The aim of this study is to investigate the effect of the variable stiffness shoe (VSS), a new non-invasive therapeutic approach, on external knee adduction moment (EKAM) in various dynamic exercises. EKAM is believed to have positive correlation with the progression and development of knee OA.
View Article and Find Full Text PDFAnterior cruciate ligament (ACL) injuries are highly prevalent during sporting activities. These injuries often are associated with maneuvers involving landing or sudden change in direction, which are thought to "destabilize" the knee joint and cause ACL rupture. ACL injuries can affect one's mobility and quality of life because of abnormal locomotion and consequent knee pain.
View Article and Find Full Text PDF