Publications by authors named "Jin-Hua Ran"

The naturally occurring bisexual cone of gymnosperms has long been considered a possible intermediate stage in the origin of flowers, but the mechanisms governing bisexual cone formation remain largely elusive. Here, we employed transcriptomic and DNA methylomic analyses, together with hormone measurement, to investigate the molecular mechanisms underlying bisexual cone development in the conifer Picea crassifolia. Our study reveals a "bisexual" expression profile in bisexual cones, especially in expression patterns of B-class, C-class and LEAFY genes, supporting the out of male model.

View Article and Find Full Text PDF

Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics.

View Article and Find Full Text PDF

Background: Mitochondrial gene transfer/loss is common in land plants, and therefore the fate of missing mitochondrial genes has attracted more and more attention. The gene content of gymnosperm mitochondria varies greatly, supplying a system for studying the evolutionary fate of missing mitochondrial genes.

Results: Here, we studied the tempo and pattern of mitochondrial gene transfer/loss in gymnosperms represented by all 13 families, using high-throughput sequencing of both DNA and cDNA.

View Article and Find Full Text PDF

The disjunct distribution between East Asia and North America is one of the best established biogeographic patterns. A robust phylogeny is fundamental for understanding the biogeographic histories of taxa with this distribution pattern. Tsuga (hemlock) is a genus of Pinaceae with a typical intercontinental disjunct distribution in East Asia and eastern and western North America, and its phylogeny has not been completely reconstructed in previous studies.

View Article and Find Full Text PDF

The evolutionary dynamics of polyploid genomes and consequences of polyploidy have been studied extensively in angiosperms but very rarely in gymnosperms. The gymnospermous genus Ephedra is characterized by a high frequency of polyploidy, and thus provides an ideal system to investigate the evolutionary mode of allopolyploid genomes and test whether subgenome dominance has occurred in gymnosperms. Here, we sequenced transcriptomes of two allotetraploid species of Ephedra and their putative diploid progenitors, identified expressed homeologs, and analyzed alternative splicing and homeolog expression based on PacBio Iso-Seq and Illumina RNA-seq data.

View Article and Find Full Text PDF

Background: Leaves have highly diverse morphologies. However, with an evolutionary history of approximately 200 million years, leaves of the pine family are relatively monotonous and often collectively called "needles", although they vary in length, width and cross-section shapes. It would be of great interest to determine whether Pinaceae leaves share similar morpho-physiological features and even consistent developmental and adaptive mechanisms.

View Article and Find Full Text PDF

Background: Gymnosperms represent five of the six lineages of seed plants. However, most sequenced plant mitochondrial genomes (mitogenomes) have been generated for angiosperms, whereas mitogenomic sequences have been generated for only six gymnosperms. In particular, complete mitogenomes are available for all major seed plant lineages except Conifer II (non-Pinaceae conifers or Cupressophyta), an important lineage including six families, which impedes a comprehensive understanding of the mitogenomic diversity and evolution in gymnosperms.

View Article and Find Full Text PDF

A laborious and difficult task in current tree of life reconstruction is to resolve evolutionary relationships of closely related congeneric species that originated from recent radiations. This is particularly difficult for forest species with long generation times and large effective population sizes such as conifers. The Qinghai-Tibetan Plateau (QTP) and adjacent areas are considered a species diversity center of Picea, harboring 11 species (including 5 varieties) of this genus, but evolutionary relationships of these species are far from being resolved due to recent radiations, morphological convergence, and frequent interspecific gene flow.

View Article and Find Full Text PDF

A robust phylogeny is prerequisite to understand the evolution and biogeography of organisms. However, ancient and recent evolutionary radiations occurred in many plant lineages, which pose great challenges for phylogenetic analysis, especially for conifers characterized by large effective population sizes and long generation times. Picea is an important component of the dark coniferous forests in the Northern Hemisphere.

View Article and Find Full Text PDF

Pinaceae comprises 11 genera, and represents the largest family of conifers with an extensive wild distribution in the Northern Hemisphere. Intergeneric relationships of Pinaceae have been investigated using many morphological characters and molecular markers, but phylogenetic positions of four genera, including Cathaya, Cedrus, Nothotsuga and Pseudolarix, remain controversial or have not been completely resolved. To completely resolve the intergeneric relationships of Pinaceae, we conducted a comparative transcriptomic study of 14 species representing all Pinaceae genera.

View Article and Find Full Text PDF

After decades of molecular phylogenetic studies, the deep phylogeny of gymnosperms has not been resolved, and the phylogenetic placement of Gnetales remains one of the most controversial issues in seed plant evolution. To resolve the deep phylogeny of seed plants and to address the sources of phylogenetic conflict, we conducted a phylotranscriptomic study with a sampling of all 13 families of gymnosperms and main lineages of angiosperms. Multiple datasets containing up to 1 296 042 sites across 1308 loci were analysed, using concatenation and coalescence approaches.

View Article and Find Full Text PDF

Little is known about patterns of genic DNA methylation across the plant kingdom or about the evolutionary processes that shape them. To characterize gene-body methylation (gbM) within exons, we have gathered single-base resolution methylome data that span the phylogenetic breadth of land plants. We find that a basal land plant, Marchantia polymorpha, lacks any evident signal of gbM within exons, but conifers have high levels of both CG and CHG (where H is A, C or T) methylation in expressed genes.

View Article and Find Full Text PDF

The origin and evolution of polyploids have been studied extensively in angiosperms and ferns but very rarely in gymnosperms. With the exception of three species of conifers, all natural polyploid species of gymnosperms belong to Ephedra, in which more than half of the species show polyploid cytotypes. Here, we investigated the origin and evolution of polyploids of Ephedra distributed in the Qinghai-Tibetan Plateau (QTP) and neighbouring areas.

View Article and Find Full Text PDF

Biogeographic history of plants is much more complex in the Northern Hemisphere than in the Southern Hemisphere due to that both the Bering and the North Atlantic land bridges contributed to floristic exchanges in the Cenozoic, which led to hybridization between congeneric species from different continents. It would be interesting to know how intercontinental gene flow and introgression have affected plant phylogenetic reconstruction and biogeographic inference. In this study, we reinvestigated the phylogenetic and biogeographic history of Picea, a main component of the Northern Hemisphere forest with many species that originated from recent radiation, using two chloroplast (cp), one mitochondrial (mt) and three single-copy nuclear gene markers.

View Article and Find Full Text PDF

Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera.

View Article and Find Full Text PDF

Living gymnosperms comprise only a little more than 1000 species, but represent four of the five main lineages of seed plants, including cycads, ginkgos, gnetophytes and conifers. This group has huge ecological and economic value, and has drawn great interest from the scientific community. Here we review recent advances in our understanding of gymnosperm evolution and biogeography, including phylogenetic relationships at different taxonomic levels, patterns of species diversification, roles of vicariance and dispersal in development of intercontinental disjunctions, modes of molecular evolution in different genomes and lineages, and mechanisms underlying the formation of large nuclear genomes.

View Article and Find Full Text PDF

Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH) subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants.

View Article and Find Full Text PDF

The Qinghai-Tibetan Plateau (QTP) has become one of the hotspots for phylogeographical studies due to its high species diversity. However, most previous studies have focused on the effects of the Quaternary glaciations on phylogeographical structures and the locations of glacial refugia, and little is known about the effects of the aridization of interior Asia on plant population structure and speciation. Here the chloroplast DNA (cpDNA) trnT-trnF and trnS-trnfM sequences were used to investigate the differentiation and phylogeographical history of 14 Ephedra species from the QTP and northern China, based on a sampling of 107 populations.

View Article and Find Full Text PDF

Phylogenetic information is essential to interpret the evolution of species. While DNA sequences from different genomes have been widely utilized in phylogenetic reconstruction, it is still difficult to use nuclear genes to reconstruct phylogenies of plant groups with large genomes and complex gene families, such as gymnosperms. Here, we use two single-copy nuclear genes, together with chloroplast and mitochondrial genes, to reconstruct the phylogeny of the ecologically-important conifer family Cupressaceae s.

View Article and Find Full Text PDF

DNA barcoding, as a tool for species discrimination, has been used efficiently in animals, algae and fungi, but there are still debates on which DNA region(s) can be used as the standard barcode(s) for land plants. Gymnosperms, especially conifers, are important components of forests, and there is an urgent need for them to be identified through DNA barcoding because of their high frequency of collection in the field. However, the feasibility of DNA barcoding in gymnosperms has not been examined based on a dense species sampling.

View Article and Find Full Text PDF

Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants.

View Article and Find Full Text PDF

The popular view that plant mitochondrial genome evolves slowly in sequence has been recently challenged by the extraordinarily high substitution rates of mtDNA documented mainly from several angiosperm genera, but high substitution rate acceleration accompanied with great length variation has been very rarely reported in plant mitochondrial genes. Here, we studied evolution of the mitochondrial rps3 gene that encodes the ribosomal small subunit protein 3 and found a dramatically high variation in both length and sequence of an exon region of it in Conifer II. A sequence comparison between cDNA and genomic DNA showed that there are no RNA editing sites in the Conifer II rps3 gene.

View Article and Find Full Text PDF

Background And Aims: Cedrus (true cedars) is a very important horticultural plant group. It has a disjunct distribution in the Mediterranean region and western Himalaya. Its evolution and biogeography are of great interest to botanists.

View Article and Find Full Text PDF

The center of diversity is not necessarily the place of origin, as has been established by many plant molecular phylogenies. Picea is a complicated but very important genus in coniferous forests of the Northern Hemisphere, with a high species diversity in Asia. Its phylogeny and biogeography were investigated here using sequence analysis of the paternally inherited chloroplast trnC-trnD and trnT-trnF regions and the maternally inherited mitochondrial nad5 intron 1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrgu04kfb3p1a5r5ahma7rp2tgg895hio): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once