Publications by authors named "Jin-Ho Koh"

Article Synopsis
  • The study examined how endurance exercise training (EXT) can help mitigate health risks associated with disrupted circadian rhythms (CR) in both shift workers and experimentally affected rats.
  • Researchers found that CR disturbance leads to negative changes in skeletal muscle, including increased dyslipidemia and decreased mitochondrial functioning.
  • Results indicated that EXT can improve cholesterol levels and enhance mitochondrial biogenesis and antioxidant defenses, suggesting it may help lower cardiovascular risks associated with CR disruptions.
View Article and Find Full Text PDF

Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism.

View Article and Find Full Text PDF

Background: Loss of muscle strength and endurance with aging or in various conditions negatively affects quality of life. Resistance exercise training (RET) is the most powerful means to improve muscle mass and strength, but it does not generally lead to improvements in endurance capacity. Free essential amino acids (EAAs) act as precursors and stimuli for synthesis of both mitochondrial and myofibrillar proteins that could potentially confer endurance and strength gains.

View Article and Find Full Text PDF

Forkhead box O1 (FOXO1) regulates muscle growth, but the metabolic role of FOXO1 in skeletal muscle and its mechanisms remain unclear. To explore the metabolic role of FOXO1 in skeletal muscle, we generated skeletal muscle-specific Foxo1 inducible knockout (mFOXO1 iKO) mice and fed them a high-fat diet to induce obesity. We measured insulin sensitivity, fatty acid oxidation, mitochondrial function, and exercise capacity in obese mFOXO1 iKO mice and assessed the correlation between FOXO1 and mitochondria-related protein in the skeletal muscle of patients with diabetes.

View Article and Find Full Text PDF

Our previous study shows that an essential amino acid (EAA)-enriched diet attenuates dexamethasone (DEX)-induced declines in muscle mass and strength, as well as insulin sensitivity, but does not affect endurance. In the present study, we hypothesized that the beneficial effects will be synergized by adding resistance exercise training (RET) to EAA, and diet-free EAA would improve endurance. To test hypotheses, mice were randomized into the following four groups: control, EAA, RET, and EAA+RET.

View Article and Find Full Text PDF

Resistance exercise training (RET) is an effective countermeasure to sarcopenia, related frailty and metabolic disorders. Here, we show that an RET-induced increase in PGC-1α4 (an isoform of the transcriptional co-activator PGC-1α) expression not only promotes muscle hypertrophy but also enhances glycolysis, providing a rapid supply of ATP for muscle contractions. In human skeletal muscle, PGC-1α4 binds to the nuclear receptor PPARβ following RET, resulting in downstream effects on the expressions of key glycolytic genes.

View Article and Find Full Text PDF

Tissues actively involved in energy metabolism are more likely to face metabolic challenges from bioenergetic substrates and are susceptible to mitochondrial dysfunction, leading to metabolic diseases. The mitochondria receive signals regarding the metabolic states in cells and transmit them to the nucleus or endoplasmic reticulum (ER) using calcium (Ca2+) for appropriate responses. Overflux of Ca2+ in the mitochondria or dysregulation of the signaling to the nucleus and ER could increase the incidence of metabolic diseases including insulin resistance and type 2 diabetes mellitus.

View Article and Find Full Text PDF

Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD pool.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effect of lithium on glucose disposal in a high-fat diet-induced type 2 diabetes mellitus (T2DM) and streptozotocin-induced type 1 diabetes mellitus (T1DM) animal model along with low-volume exercise and low-dose insulin. Lithium decreased body weight, fasting plasma glucose, and insulin levels when to treat with low-volume exercise training; however, there were no adaptive responses like an increase in GLUT4 content and translocation factor levels. We discovered that lithium enhanced glucose uptake by acute low-volume exercise-induced glycogen breakdown, which was facilitated by the dephosphorylation of serine 473-AKT (Ser473-AKT) and serine 9-GSK3β.

View Article and Find Full Text PDF

Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic.

View Article and Find Full Text PDF

Alcohol consumption leads to the dysfunction of multiple organs including liver, heart, and skeletal muscle. Alcohol effects on insulin resistance in liver are well evidenced, whereas its effects in skeletal muscle remain controversial. Emerging evidence indicates that alcohol promotes adipose tissue dysfunction, which may induce organ dysregulation.

View Article and Find Full Text PDF

This study aimed to investigate the long-term effects of training intervention and resting on protein expression and stability of peroxisome proliferator-activated receptor β/δ (PPARβ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), glucose transporter type 4 (GLUT4), and mitochondrial proteins, and determine whether glucose homeostasis can be regulated through stable expression of these proteins after training. Rats swam daily for 3, 6, 9, 14, or 28 days, and then allowed to rest for 5 days post-training. Protein and mRNA levels were measured in the skeletal muscles of these rats.

View Article and Find Full Text PDF

Diet-induced insulin resistance (IR) adversely affects human health and life span. We show that muscle-specific overexpression of human mitochondrial transcription factor A (TFAM) attenuates high-fat diet (HFD)-induced fat gain and IR in mice in conjunction with increased energy expenditure and reduced oxidative stress. These TFAM effects on muscle are shown to be exerted by molecular changes that are beyond its direct effect on mitochondrial DNA replication and transcription.

View Article and Find Full Text PDF

The objective of this study is to determine whether AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), or peroxisome proliferator-activated receptor β (PPARβ) can independently mediate the increase of glucose transporter type 4 (GLUT4) expression that occurs in response to exercise training. We found that PPARβ can regulate GLUT4 expression without PGC-1α. We also found AMPK and PPARβ are important for maintaining normal physiological levels of GLUT4 protein in the sedentary condition as well following exercise training.

View Article and Find Full Text PDF

The objective of this study was to evaluate the specific mechanism(s) by which PPARβ regulates mitochondrial content in skeletal muscle. We discovered that PPARβ increases PGC-1α by protecting it from degradation by binding to PGC-1α and limiting ubiquitination. PPARβ also induces an increase in nuclear respiratory factor 1 (NRF-1) expression, resulting in increases in mitochondrial respiratory chain proteins and MEF2A, for which NRF-1 is a transcription factor.

View Article and Find Full Text PDF

Key Points: Long-term endurance exercise training results in a reduction in the rates of muscle glycogen depletion and lactic acid accumulation during submaximal exercise; this adaptation is mediated by an increase in muscle mitochondria. There is evidence suggesting that short-term training induces adaptations that downregulate glycogenolysis before there is an increase in functional mitochondria. We discovered that a single long bout of exercise induces decreases in expression of glycogenolytic and glycolytic enzymes in rat skeletal muscle; this adaptation results in slower rates of glycogenolysis and lactic acid accumulation in muscle during contractile activity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb3atde4ae5pm8o4lbotst8u9u46qilmc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once