The physiological functions of various fatty acid-originating metabolites from foods and fermented products remained mostly untouched. Thereby, this study examined the biological activities of hydroxy fatty acids as agonists of G protein-coupled receptors (i.e.
View Article and Find Full Text PDFIron-dependent lipoxygenases (LOXs) are involved in the synthesis of oxylipins from polyunsaturated fatty acids. However, they are usually difficult to overexpress in functional form in microbial cell factories. Moreover, 9-LOXs, generating 9-hydroperoxy fatty acids from C18 polyunsaturated fatty acids, have rarely been found from microbial sources.
View Article and Find Full Text PDFα,ω-Dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes are valuable building blocks for the production of biopolyesters and biopolyamides. One of the key steps in producing these chemicals is the oxidation of ω-hydroxycarboxylic acids using alcohol dehydrogenases (e.g.
View Article and Find Full Text PDFCurr Opin Biotechnol
February 2024
Single-carbon (C1) biorefinery plays a key role in the consumption of global greenhouse gases and a circular carbon economy. Thereby, we have focused on the valorization of C1 compounds (e.g.
View Article and Find Full Text PDFA number of carboligases, which catalyze condensation of C1- and/or C2-aldehydes into multi-carbon products, have been reported. However, their catalytic activities and/or regioselectivities remained rather low. Thereby, this study has focused on engineering of C1 and C2 carboligases for the regioselective condensation of C1-formaldehyde into C4-erythrulose via C2-glycolaldehyde.
View Article and Find Full Text PDFResolvin D5 (RvD5), 7S,17S-dihydroxy-4Z,8E,10Z,13Z,15E,19Z-docosahexaenoic acid (DHA) is a specialized pro-resolving mediator (SPM) generated in human macrophages. It is implicated in the resolution of inflammation and synthesized using an inefficient chemical process. Here, DHA-enriched oil hydrolysate was prepared from oils by lipase with resin treatment and solvent extraction.
View Article and Find Full Text PDFAccumulating psychophysical evidence suggests substantial individual variability in oral/taste sensitivity to non-esterified, long-chain fatty acids (NEFA), which is commonly referred to as fat taste or oleogustus. Recent studies have sought to determine its associations with human factors such as body mass index (BMI) and food preferences, as it has been claimed that excessive fat consumption is related to several health conditions, including obesity. Yet, the findings are controversial.
View Article and Find Full Text PDFSecretory phospholipase A (sPLA), which hydrolyzes the sn-2 acyl bond of lecithin in a Ca-dependent manner, is an important enzyme in the oil and oleochemical industries. However, most sPLAs are not stable under process conditions. Therefore, a thermostable sPLA was investigated in this study.
View Article and Find Full Text PDFA huge amount of phospholipids or lecithin is produced as a byproduct in the vegetable oil industry. However, most are just used as a feed additive. This study has focused on enzymatic valorization of lecithin.
View Article and Find Full Text PDFPhotobiocatalysis is a growing field of biocatalysis. Especially light-driven enzyme catalysis has contributed significantly to expanding the scope of synthetic organic chemistry. However, photoenzymes usually utilise a rather narrow wavelength range of visible (sun)light.
View Article and Find Full Text PDFEscherichia coli-based whole-cell biocatalysts are widely used for the sustainable production of value-added chemicals. However, weak acids present as substrates and/or products obstruct the growth and fermentation capability of E. coli.
View Article and Find Full Text PDFω-Hydroxynonanoic acid and α,ω-nonanedioic acid are used for synthesizing diverse chemicals. Although biological methods are developed, their concentrations are low due to the toxicity of high concentrations of the hydrophobic chemicals toward biocatalysts. Here, we constructed a biocatalytic system with high productivity by adding an adsorbent resin and a strong base anion-exchange resin, reducing the solubility of ω-hydroxynonanoic acid and α,ω-nonanedioic acid, feeding ω-hydroxynonanoic acid, and introducing a cofactor regeneration system.
View Article and Find Full Text PDFMedium-chain α,ω-dicarboxylic acids produced from renewable long-chain fatty acids are valuable as precursors in the chemical industry. However, they are difficult to produce biologically at high concentrations. Although improved biocatalyst systems consisting of engineering of Baeyer-Villiger monooxygenases are used in the production of ω-hydroxycarboxylic acids from long-chain fatty acids, the engineering of biocatalysts involved in the production of α,ω-dicarboxylic acids from ω-hydroxycarboxylic acids has been rarely attempted.
View Article and Find Full Text PDFEn route to a bio-based chemical industry, the conversion of fatty acids into building blocks is of particular interest. Enzymatic routes, occurring under mild conditions and excelling by intrinsic selectivity, are particularly attractive. Here we report photoenzymatic cascade reactions to transform unsaturated fatty acids into enantiomerically pure secondary fatty alcohols.
View Article and Find Full Text PDFHexanoic acid and its derivatives have been recently recognized as value-added materials and can be synthesized by several microbes. Of them, has been considered as an interesting hexanoic acid producer because of its capability to utilize a variety of carbons sources. However, the cellular metabolism and physiology of still remain uncharacterized.
View Article and Find Full Text PDFPhospholipase A (PLA) from is a lipolytic enzyme used in a wide range of industrial applications including production of lysolecithins and enzymatic degumming of edible oils. We have therefore investigated expression and secretion of PLA in two workhorse microbes, and . The PLA was produced to an activity of 0.
View Article and Find Full Text PDFLong-chain aliphatic amines such as (S,Z)-heptadec-9-en-7-amine and 9-aminoheptadecane were synthesized from ricinoleic acid and oleic acid, respectively, by whole-cell cascade reactions using the combination of an alcohol dehydrogenase (ADH) from Micrococcus luteus, an engineered amine transaminase from Vibrio fluvialis (Vf-ATA), and a photoactivated decarboxylase from Chlorella variabilis NC64A (Cv-FAP) in a one-pot process. In addition, long chain aliphatic esters such as 10-(heptanoyloxy)dec-8-ene and octylnonanoate were prepared from ricinoleic acid and oleic acid, respectively, by using the combination of the ADH, a Baeyer-Villiger monooxygenase variant from Pseudomonas putida KT2440, and the Cv-FAP. The target compounds were produced at rates of up to 37 U g dry cells with conversions up to 90 %.
View Article and Find Full Text PDFStructure-based engineering of a NAD+-dependent secondary alcohol dehydrogenase from Micrococcus luteus led to a 1800-fold increase in catalytic efficiency for NADP+. Furthermore, the engineered enzymes (e.g.
View Article and Find Full Text PDF1,9-Nonanedioic acid is one of the valuable building blocks for producing polyesters and polyamides. Thereby, whole-cell biosynthesis of 1,9-nonanedioic acid from oleic acid has been investigated. A recombinant , expressing the alcohol/aldehyde dehydrogenases (ChnDE) of sp.
View Article and Find Full Text PDFWhole cell biocatalysts can be used to convert fatty acids into various value-added products. However, fatty acid transport across cellular membranes into the cytosol of microbial cells limits substrate availability and impairs membrane integrity, which in turn decreases cell viability and bioconversion activity. Because these problems are associated with the mechanism of fatty acid transport through membranes, a whole-cell biocatalyst that can form caveolae-like structures was generated to promote substrate endocytosis.
View Article and Find Full Text PDFWhole-cell biotransformation is one of the promising alternative approaches to microbial fermentation for producing high-value chemicals. Baeyer-Villiger monooxygenase (BVMO)-based Escherichia coli biocatalysts have been engineered to produce industrially relevant C9 chemicals, such as n-nonanoic acid and 9-hydroxynonanoic acid, from a renewable long-chain fatty acid. The key enzyme in the biotransformation pathway (i.
View Article and Find Full Text PDFBaeyer-Villiger monooxygenase (BVMO) catalyzes insertion of an oxygen atom into aliphatic or cyclic ketones with high regioselectivity. The BVMOs from Parvibaculum lavamentivorans (BVMO) and Oceanicola batsensis (BVMO) are interesting because of their homologies, with >40% sequence identity, and reaction with the same cyclic ketones with a methyl moiety to give different products. The revealed BVMO structure shows that BVMO forms a two-domain structure like other BVMOs.
View Article and Find Full Text PDFThis study presents the preparation and physical-chemical characterization of chemical resistant polyurethane-based compartments for biocatalytic application. The artificial compartments were prepared from an emulsion of polymer precursor and an aqueous phase that includes a biocatalytic reaction system. After curing, highly dispersed aqueous domains were obtained, which still contain the entire biocatalytic reaction system and remain fixed in the solid polymer preparation.
View Article and Find Full Text PDFCurcumin is a yellow-colored ingredient in dietary spice turmeric ( Curcuma longa Linn). This nontoxic polyphenol has antitumor, anti-inflammatory, apoptotic, and antioxidant activities. The ingested curcumin is reduced to multihydrated forms with more potent therapeutic potentials by the curcumin reductase (CurA) from commensal Escherichia coli.
View Article and Find Full Text PDF