Publications by authors named "Jin-An Shi"

In van der Waals (vdW) heterostructures, the interlayer electron-phonon coupling (EPC) provides one unique channel to nonlocally engineer these elementary particles. However, limited by the stringent occurrence conditions, the efficient engineering of interlayer EPC remains elusive. Here we report a multitier engineering of interlayer EPC in WS/boron nitride (BN) heterostructures, including isotope enrichments of BN substrates, temperature, and high-pressure tuning.

View Article and Find Full Text PDF

Materials possessing structural phase transformations exhibit a rich set of physical and chemical properties that can be used for a variety of applications. In 2D materials, structural transformations have so far been induced by strain, lasers, electron injection, electron/ion beams, thermal loss of stoichiometry, and chemical treatments or by a combination of such approaches and annealing. However, stoichiometry-preserving, purely thermal, reversible phase transitions, which are fundamental in physics and can be easily induced, have not been observed.

View Article and Find Full Text PDF

We report the chemical vapor deposition (CVD) growth, characterization, and low-temperature magnetotransport of 1T phase multilayer single-crystalline VTe nanoplates. The transport studies reveal that no sign of intrinsic long-range ferromagnetism but localized magnetic moments exist in the individual multilayer metallic VTe nanoplates. The localized moments give rise to the Kondo effect, evidenced by logarithmical increment of resistivity with decreasing temperature and negative magnetoresistance (NMR) regardless of the direction of magnetic field at temperatures below the resistivity minimum.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created special tiny rods made from gold (Au) and zinc oxide (ZnO) that have unique features at their connections.
  • These rods help make detecting a brain chemical called dopamine much better than using just tiny gold pieces.
  • Researchers found that the way these rods work and transfer energy is really important for improving their performance in different tasks.
View Article and Find Full Text PDF
Article Synopsis
  • The main part of lithium-ion batteries is made of lithium ions and a type of metal oxide, but how they change during use isn't well understood.
  • Researchers studied these changes in a special kind of battery and found that when lithium ions leave, the structure of the metal oxide shifts in different directions.
  • It turns out that the way the lithium ions move affects the movement of metal ions and can create problems in the structure, but adding certain materials can help keep it stable during this process.
View Article and Find Full Text PDF

Silicon (Si) possesses the highest theoretical capacity as an anode material for lithium-ion batteries, and many efforts have been made to address the poor cycling stability issue that is associated with its huge volume changes during Li-Si alloying/de-alloying processes, mostly through the design of nanostructured materials. Herein, we report a simple cell configuration approach to improve the lithium storage performance of commercial nano-Si through the insertion of carbon nanofiber films (CNFs) as interlayers between the Si electrodes and separators. For this advanced cell configuration, commercial Si nanoparticle (Si NP) electrodes demonstrate a significantly improved reversible capacity (2700 mA h g-1 after 40 cycles at 50 mA g-1) and an ultralong cycle life (1250 mA h g-1 after 430 cycles at 1500 mA g-1).

View Article and Find Full Text PDF

Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO thin films formed in mesa-geometry structures.

View Article and Find Full Text PDF

Large scale epitaxial growth and transfer of monolayer MoS has attracted great attention in recent years. Here, we report the wafer-scale epitaxial growth of highly oriented continuous and uniform monolayer MoS films on single-crystalline sapphire wafers by chemical vapor deposition (CVD) method. The epitaxial film is of high quality and stitched by many 0°, 60° domains and 60°-domain boundaries.

View Article and Find Full Text PDF

We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation.

View Article and Find Full Text PDF

Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors.

View Article and Find Full Text PDF

Flexible and self-supported carbon-coated FeS on carbon cloth films (denoted as FeS@C/carbon cloth) is prepared by a facial hydrothermal method combined with a carbonization treatment. The FeS@C/carbon cloth could be directly used as electrodes for Li-ion batteries (LIBs) and sodium-ion batteries (NIBs). The synthetic effects of the structure, highly electron-conductive of carbon cloth, porous structure for electrolyte access, and uniform carbon shell on FeS surface to accommodate the volume change lead to improved cyclability and rate capability.

View Article and Find Full Text PDF

Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field.

View Article and Find Full Text PDF

Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls.

View Article and Find Full Text PDF