Publications by authors named "Jin Yeong Park"

In stretchable strain sensors, highly elastic elastomers such as polydimethylsiloxane (PDMS), Ecoflex, and polyurethane are commonly used for binder materials of the nanocomposite and substrates. However, the viscoelastic nature of the elastomers and the interfacial action between nanofillers and binders influence the critical sensor performances, such as repeatability, response, and hysteresis behavior. In this study, we developed a stretchable nanocomposite strain sensor composed of multiwalled carbon nanotubes and a silicone elastomer binder.

View Article and Find Full Text PDF

We report on highly stretchable polymer dispersed liquid crystal (PDLC)-based smart windows using Ag nanowires (NWs) and conductive PEDOT:PSS hybrid electrodes. By bar coating a Ag NW and PEDOT:PSS mixed ink on a transparent and stretchable polyurethane (PU) substrate, we fabricated highly transparent and stretchable hybrid electrodes with a sheet resistance of 40 ohm per square, an optical transmittance of 82%, and a stretchability of 30% to replace conventional brittle ITO electrode. Bending and stretching tests demonstrated that the mechanical properties of the Ag NW and PEDOT:PSS hybrid electrode were better than those of the ITO/PU sample.

View Article and Find Full Text PDF

Most Saccharomyces spp. cannot degrade or ferment dextrin, which is the second most abundant carbohydrate in wort for commercial beer production. Dextrin-degrading brewer's bottom and top yeasts expressing the glucoamylase gene (GAM1) from Debaryomyces occidentalis were developed to produce low-carbohydrate (calorie) beers.

View Article and Find Full Text PDF

In a previous study, we found that the 3,4-dihydroquinazoline derivative, 4-(Benzylcarbamoylmethyl)-2-(biphenyl-4-ylamino)-3-(5-tert-butyloxycarbamoyl-1-pentyl)-3,4-dihydroquinazoline (KYS05047), was a selective T-type Ca(2+) channel blocker with anti-proliferative effects against various cancer cells. However, the mechanism responsible for its effects has not been studied. In this study, we investigated the effect of KYS05047 on cell cycle arrest and the mechanisms involved in human lung adenocarcinoma A549 cells.

View Article and Find Full Text PDF

An extension of our previously reported 3,4-dihydroquinazoline derivative is investigated. Oral anti-tumoral activity of 3,4-dihydroquinazoline derivative (KYS05090) as potent and selective T-type calcium channel blocker was in vivo evaluated against A549 xenograft in BALB/c(nu/nu) nude mice. The rate of tumor volume increment in mouse model with KYS05090-treated group was remarkably slower than that of control group.

View Article and Find Full Text PDF

A comparative molecular similarity indices analysis (CoMSIA) of a set of 42 3,4-dihydroquinazolines have been performed to find out the pharmacophore elements for T-type calcium channel blocking activity. The most potent compound, 33 (KYS05090) was used to align the molecules. As a result, we obtained 3D QSAR model which provided good predictivity for the training set (q(2)=0.

View Article and Find Full Text PDF