Publications by authors named "Jin Seop Bak"

Lignocellulose-decaying fungal bioplatforms available are not commercially accessible and are limited to short-term use. In this study, those limitations were overcome by developing a platform using water-soaked rice straw (RS) biodegraded by irradiation-based fungal pretreatment (IBFP). This eco-friendly system increased the ability of RS to biodegrade and ferment without the generation of inhibitory compounds.

View Article and Find Full Text PDF

To verify the interconnective relationship between biodegradation efficiency and microfibril structure, recalcitrant rice straw (RS) was depolymerized using water soaking-based microbiological biodegradation (WSMB). This eco-friendly biosystem, which does not predominantly generate inhibitory metabolites, could increase both the hydrolytic accessibility and fermentation efficiency of RS. In detail, when swollen RS (with Fenton cascades) was simultaneously bio-treated with Phanerochaete chrysosporium for 12 days, the biodegradability was 65.

View Article and Find Full Text PDF

In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.

View Article and Find Full Text PDF

To support the inefficient limitation of long-term biosystem by well-known simultaneous saccharification and fermentation (SSF), electron beam irradiated rice straw (at 80 kGy, 1 MeV, and 0.12 mA) was fermented using fungal-based simultaneous saccharification and fermentation (FBSSF) by saprophytic zygomycetes Mucor indicus. Based on the growth optimization (by response surface methodology), this eco-friendly bioprocess either without metabolic inhibitors (especially furfurals and acetic acids) or byproducts (especially glycerols) significantly increased the biodegradability and fermentability of lignocellulosic rice straw.

View Article and Find Full Text PDF

Plant biomass can be utilized by a lignocellulose-degrading fungus, Phanerochaete chrysosporium, but the metabolic and regulatory mechanisms involved are not well understood. A polyomics-based analysis (metabolomics, proteomics, and transcriptomics) of P. chrysosporium has been carried out using statistically optimized conditions for lignocellulolytic reaction.

View Article and Find Full Text PDF

In order to solve the inefficient problem of long-term biodegradation by wood-decaying fungus, rice straw (RS) was depolymerized using electron beam irradiation-based biodegradation (EBIBB). This environment-friendly program without the use of inhibitory byproducts significantly increased the digestibility and fermentability of RS. Specifically, when irradiated RS was simultaneously biodegraded by Phanerochaete chrysosporium for 10 days, the sugar yield was 65.

View Article and Find Full Text PDF

Dichomitus squalens, a wood-rotting fungus, can utilize recalcitrant biomass for growth; however, the extracellular metabolic processes involved are not well understood. A systematic target analysis of D. squalens has been carried out using optimized conditions for lignocellulolysis.

View Article and Find Full Text PDF

In order to overcome the limitation of commercial electron beam irradiation (EBI), lignocellulosic rice straw (RS) was pretreated using water soaking-based electron beam irradiation (WEBI). This environment-friendly pretreatment, without the formation (or release) of inhibitory compounds (especially hydroxymethylfurfural and furfural), significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100%) was treated with WEBI doses of 1 MeV at 80 kGy, 0.

View Article and Find Full Text PDF

The lignocellulolytic platform of the wood-decaying organism Dichomitus squalens is important for production of biodegradable elements; however, the system has not yet been fully characterized. In this study, using statistical target optimization, we analysed substrate selectivity based on a variety of D. squalens metabolic pathways using combined omics tools.

View Article and Find Full Text PDF

Rice straw was fermented by a wood-rot fungus Dichomitus squalens as a biological pretreatment, to increase the enzymatic digestibility of lignocellulose and promote cellulose hydrolysis. Response surface methodology was employed to optimize the fermentation medium of D. squalens for achieving the maximum volumetric activity of manganese peroxidase.

View Article and Find Full Text PDF

Phanerochaete chrysosporium is a wood-rot fungus that is capable of degrading lignin via its lignolytic system. In this study, an environmentally friendly fungal pretreatment process that produces less inhibitory substances than conventional methods was developed using P. chrysosporium and then evaluated by various analytical methods.

View Article and Find Full Text PDF

Rice straw was pretreated using aqueous-ammonia solution at moderate temperatures to enable production of the maximum amount of fermentable sugars from enzymatic hydrolysis. The effects of various operating variables including pretreatment temperature, pretreatment time, the concentration of ammonia and the solid-to-liquid ratio on the degree of lignin removal and the enzymatic digestibility were optimized using response surface methodology. The optimal reaction conditions, which resulted in an enzymatic digestibility of 71.

View Article and Find Full Text PDF

Rice straw was irradiated using an electron beam at currents and then hydrolyzed with cellulase and beta-glucosidase to produce glucose. The pretreatment by electron beam irradiation (EBI) was found to significantly increase the enzyme digestibility of rice straw. Specifically, when rice straw that was pretreated by EBI at 80 kGy at 0.

View Article and Find Full Text PDF