J Environ Sci Health A Tox Hazard Subst Environ Eng
March 2023
Purpose: Blast lung injury (BLI) is the most common damage resulted from explosion-derived shock wave in military, terrorism and industrial accidents. However, the molecular mechanisms underlying BLI induced by shock wave are still unclear.
Methods: In this study, a goat BLI model was established by a fuel air explosive power.
Low-temperature plasma (LTP) has shown great promise in wound healing, although the underlying mechanism remains poorly understood. In the present study, an argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro and skin wounds in BALB/c mice. The in vitro analysis revealed that treatment of fibroblasts with LTP for 15 s resulted in a significant increase in cell proliferation, secretion of epidermal growth factor (EGF) and transforming growth factor-βi (TGF-βi), production of intracellular reactive oxygen species (ROS), and the percentage of cells in S phase, protein expression of phosphorylated p65 (P-p65) and cyclinD1, but a noted decrease in the protein expression of inhibitor kappa B (IκB).
View Article and Find Full Text PDFThe potential applications of low temperature plasma (LTP) in wound healing have aroused the concern of many researchers. In this study, an argon atmospheric pressure plasma jet was applied to generate LTP for treatment of murine fibroblast cell (L929) cultured in vitro to investigate the effect of NF-κB pathway on fibroblast proliferation. The results showed that, compared with the control, L929 cells treated with plasma for less than 20 s had significant increases of proliferation; the productions of intracellular ROS, O and NO increased with prolongation of LTP treatment time; NF-κB pathway was activated by LTP in a proper dose range, and the expression of cyclinD1 in LTP-treated cells increased with the same trend as cell proliferation.
View Article and Find Full Text PDF