Publications by authors named "Jin Qiang Hou"

Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging.

View Article and Find Full Text PDF

DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket.

View Article and Find Full Text PDF

A small-sized c-MYC promoter G-quadruplex selective fluorescent BZT-Indolium binding ligand was demonstrated for the first time as a highly target-specific and photostable probe for in vitro staining and live cell imaging and it was found to be able to inhibit the amplification of the c-MYC G-rich sequence (G-quadruplex) and down-regulate oncogene c-MYC expression in human cancer cells (HeLa).

View Article and Find Full Text PDF

A symmetric ligand is synthesized composed of a core -methylpyridinium scaffold and two -substituted benzyl groups through a flexible ethylene bridge to form a novel three-ring-conjugated system. The ligand system was found to have only weak background fluorescent signal in aqueous or physiological conditions and exhibited strong fluorescent signal enhancement targeting at telo21 G-quadruplex structure rather than other types of nucleic acids. The comparison study with two terminal groups (-N(CH) -SCH) indicates that the stimulated signal enhancement of specific binding is probably attributed to the hydrogen-bonding interactions through the amino groups in the G-quartets.

View Article and Find Full Text PDF

The universal fluorescent staining property of thiazole orange (TO) dye was adapted in order to be specific for G-quadruplex DNA structures, through the introduction of a styrene-like substituent at the ortho-position of the TO scaffold. This extraordinary outcome was determined from experimental studies and further explored through molecular docking studies. The molecular docking studies help understand how such a small substituent leads to remarkable fluorescent signal discrimination between G-quadruplex DNA and other types of nucleic acids.

View Article and Find Full Text PDF

c-MYC is an important oncogene that is considered as an effective target for anticancer therapy. Regulation of this gene's transcription is one avenue for c-MYC-targeting drug design. Direct binding to a transcription factor and generating the intervention of a transcriptional programme appears to be an effective way to modulate gene transcription.

View Article and Find Full Text PDF

To efficiently identify small molecules binding to a G-quadruplex structure while avoiding binding to duplex DNA, we performed a multistep structure-based virtual screening by simultaneously taking into account G-quadruplex DNA and duplex DNA. Among the 13 compounds selected, one outstanding ligand shows significant selectivity for G-quadruplex binding as determined using SPR, FRET-based competition and luciferase activity assay.

View Article and Find Full Text PDF

The c-KIT G-quadruplex structures are a novel class of attractive targets for the treatment of gastrointestinal stromal tumor (GIST). Herein, a series of new quinazolone derivatives with the expansion of unfused aromatic ring system were designed and synthesized. Subsequent biophysical studies demonstrated that the derivatives with adaptive scaffold could effectively bind to and stabilize c-KIT G-quadruplexes with good selectivity against duplex DNA.

View Article and Find Full Text PDF

In the present study, a series of novel azaoxoisoaporphine derivatives were reported and their inhibitory activities toward acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and Aβ aggregation were evaluated. The new compounds remained high inhibitory potency on Aβ aggregation, with inhibitory activity from 29.42% to 89.

View Article and Find Full Text PDF

The C-5-methylation of cytosine in the CpG islands is an important pattern for epigenetic modification of gene, which plays a key role in regulating gene transcription. G-quadruplex is an unusual DNA secondary structure formed in G-rich regions and is identified as a transcription repressor in some oncogenes, such as c-myc and bcl-2. In the present study, the results from CD spectrum and FRET assay showed that the methylation of cytosine in the CpG islands could induce a conformational change of the G-quadruplex in the P1 promoter of bcl-2, and greatly increase the thermal-stability of this DNA oligomer.

View Article and Find Full Text PDF

G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands.

View Article and Find Full Text PDF

The rapid and convenient method for identification of all kinds of G-quadruplex is highly desirable. In the present study, a novel colorimetric indicator for a vast variety of G-quadruplex was designed and synthesized on the basis of thiazole orange and isaindigotone skeleton. Its distinct color change enables label-free visual detection of G-quadruplexes, which is due to the disassembly of dye H-aggregates to monomers.

View Article and Find Full Text PDF

A series of isaindigotone derivatives and analogues were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced β-amyloid (Aβ) aggregation. The synthetic compounds had IC(50) values at micro or nano molar range for cholinesterase inhibition, and some compounds exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE, which were much better than the isaindigotone derivatives previously reported by our group. Most of these compounds showed higher self-induced Aβ aggregation inhibitory activity than a reference compound curcumin.

View Article and Find Full Text PDF

We recently reported that synthetic derivatives of rutaecarpine alkaloid exhibited high acetyl cholinesterase (AChE) inhibitory activity and high selectivity for AChE over butyrylcholinesterases (BuChE). To explore novel effective drugs for the treatment of Alzheimer's disease (AD), in this paper, further research results were presented. Starting from a structure-based drug design, a series of novel 2-(2-indolyl-)-4(3H)-quinazolines derivates were designed and synthesized as the ring-opened analogues of rutaecarpine alkaloid and subjected to pharmacological evaluation as AChE inhibitors.

View Article and Find Full Text PDF

G-quadruplex structures are a new class of attractive targets for DNA-interactive anticancer agents. The primary building block of this structure is the G-quartet, which is composed of four coplanar guanines and serves as the major binding site for small molecules. NMR studies and molecular dynamics simulations have suggested that the planarity of G-quartet surface has been highly dynamic in solution.

View Article and Find Full Text PDF

G-Quadruplex is a special DNA secondary structure and present in many important regulatory regions in human genome, such as the telomeric end and the promoters of some oncogenes. Specially, different forms of G-quadruplexes exist in telomeric DNA and c-myc promoter and play important roles in the pathway of cell proliferation and senescence. The effects of G-quadruplex ligands for either telomeric or c-myc G-quadruplex in vitro have been widely studied, but the specificity of these effects in vivo is still unknown.

View Article and Find Full Text PDF

A series of quinolino-benzo-[5, 6]-dihydroisoquindolium compounds (3a, 3f, 3g, and 3j) derived from alkaloid berberine were designed and synthesized as novel G-quadruplex ligands. Subsequent biophysical and biochemical evaluation demonstrated that the addition of pyridine ring and amino group into berberine improved the binding ability and selectivity towards G-quadruplex DNA in comparison with the previously reported 9-N-substituted berberine derivatives. Furthermore, qRT-PCR assay showed compound 3j led the down-regulation of c-myc gene transcription in leukemia cell line HL60, while little effect on normal cell line ECV-304, which was consistent with the behavior of an effective G-quadruplex ligand targeting c-myc oncogene.

View Article and Find Full Text PDF

A series of 2-phenyl-benzopyranopyrimidine (PBPP) derivatives with alkylamino side chains were synthesized and found to be a new type of highly selective ligand to bind with telomeric G-quadruplex DNA, and their biological properties were reported for the first time. Their interactions with telomeric G-quadruplex DNA were studied with FRET melting, surface plasmon resonance, CD spectroscopy, and molecular modeling. Our results showed that the disubstituted PBPP derivatives could strongly bind to and effectively stabilize the telomeric G-quadruplex structure, and had significant selectivity for G-quadruplex over duplex DNA.

View Article and Find Full Text PDF

Quindoline derivatives as telomeric quadruplex ligands have shown good biological activity for telomerase inhibition. In the present study, we used spectroscopic and calorimetric methods to investigate the interactions between a quindoline derivative (5-methyl-11-(2-morpholinoethylamino)-10-H-indolo-[3,2-b]quinolin-5-ium iodide, compound 1) and human telomeric G-quadruplex. The thermodynamic studies using isothermal titration calorimetry (ITC) indicated that their binding process was temperature-dependent and enthalpy-entropy co-driven.

View Article and Find Full Text PDF

G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences, and they are attractive anticancer drug targets. Understanding the three-dimensional interactions between a G-quadruplex and its ligand in solution is the key to discovering a drug lead. Hence, from crystallographic or NMR structures, molecular dynamics studies have been performed on six ligand-quadruplex complexes.

View Article and Find Full Text PDF

A series of novel rutaecarpine derivatives and related alkaloid derivatives 3-aminoalkanamido-substituted rutaecarpine 4a-f and 7,8-dehydrorutaecarpine 5a-c, and 6-aminoalkanamido-substituted 3-[2-(3-Indolyl)ethyl]-4(3a)-quinazolinones 8a-c, were synthesized and subjected to pharmacological evaluation as acetylcholinesterase (AChE) inhibitors. The synthetic compounds exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE. The structure-activity relationships were discussed and their binding conformation and simultaneous interactions mode were further clarified by kinetic characterization and the molecular docking studies.

View Article and Find Full Text PDF

A series of new 9-O-substituted berberine derivatives (4a-j) as telomeric quadruplex ligands was synthesized and evaluated. The results from biophysical and biochemical assay indicated that introducing of positive charged aza-aromatic terminal group into the side chain of 9-position of berberine significantly improved the binding ability with G-quadruplex, and exhibited the inhibitory effect on the hybridization and on telomerase activity. These derivatives showed excellent selectivity for telomeric G-quadruplex DNA over duplex.

View Article and Find Full Text PDF

Four isaindigotone derivatives (5a,b and 6a,b) designed as telomeric G-quadruplex ligands have been synthesized and characterized. The unfused aromatic rings in these compounds allow a flexible and adaptive conformation in G-quadruplex recognition. The interaction of human telomeric G-quadruplex DNA with these designed ligands was explored by means of FRET melting, fluorescence titration, CD spectroscopy, continuous variation, and molecular modeling studies.

View Article and Find Full Text PDF