Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with an overall median 5-year survival rate of 8%. This poor prognosis is because of the development of resistance to chemotherapy and radiation therapy and lack of effective targeted therapies. IκB kinase enhancer (IKBKE) overexpression was previously implicated in chemoresistance.
View Article and Find Full Text PDFBackground: Genome-wide association studies (GWAS) have identified multiple loci associated with epithelial ovarian cancer (EOC) susceptibility, but further progress requires integration of epidemiology and biology to illuminate true risk loci below genome-wide significance levels (P < 5 × 10). Most risk SNPs lie within non-protein-encoding regions, and we hypothesize that long noncoding RNA (lncRNA) genes are enriched at EOC risk regions and represent biologically relevant functional targets.
Methods: Using imputed GWAS data from about 18,000 invasive EOC cases and 34,000 controls of European ancestry, the GENCODE (v19) lncRNA database was used to annotate SNPs from 13,442 lncRNAs for permutation-based enrichment analysis.
RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single nucleotide polymorphisms (SNPs) in ADAR genes modify EOC susceptibility, potentially by altering ovarian tissue gene expression. Using directly genotyped and imputed data from 10,891 invasive EOC cases and 21,693 controls, we evaluated the associations of 5,303 SNPs in ADAD1, ADAR, ADAR2, ADAR3, and SND1.
View Article and Find Full Text PDFActivation of the serine-threonine kinase Akt promotes the survival and proliferation of various cancers. Hypoxia promotes the resistance of tumor cells to specific therapies. We therefore explored a possible link between hypoxia and Akt activity.
View Article and Find Full Text PDFNon-small cell lung cancers (NSCLC) marked by EGFR mutations tend to develop resistance to therapeutic EGFR inhibitors, often due to secondary mutation EGFR(T790M) but also other mechanisms. Here we report support for a rationale to target IKBKE, an IκB kinase family member that activates the AKT and NF-κB pathways, as one strategy to address NSCLC resistant to EGFR inhibitors. While wild-type and mutant EGFR directly interacted with IKBKE, only mutant EGFR phosphorylated IKBKE on residues Y153 and Y179.
View Article and Find Full Text PDF